Quantum computing is not a familiar topic to most people, nor is programming a quantum computer. Our tutorials provide background information for those interested in understanding quantum computers and how to program them.

How D-Wave processors are built, and how they use the physics of spin systems to implement quantum computation The aim of this document is to describe how a quantum computer is physically built, how quantum bits and their associated circuitry are created, addressed, and controlled, and what is happening inside the computer when programmers send information to a D-Wave quantum machine.


D-Wave has published more than 70 peer-reviewed papers in scientific journals including Nature, Science, Physical Review and others. There are also many other papers written by independent scientists about the D-Wave technology. You can find links to them from the publications page.

Maxwell Henderson, John Novak, Tristan Cook

"Accurate, reliable sampling from fully-connected graphs with arbitrary correlations is a difficult problem. Such sampling requires knowledge of the probabilities of observing every possible state of a graph. As graph size grows, the number of model states becomes intractably large and efficient computation requires full sampling be replaced with heuristics and algorithms that are only approximations of full sampling. This work investigates the potential impact of adiabatic quantum computation for sampling purposes, building on recent successes training Boltzmann machines using a quantum device. We investigate the use case of quantum computation to train Boltzmann machines for predicting the 2016 Presidential election."

(30 Jan 2018) https://arxiv.org/abs/1802.00069