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Overview

Storyline that we are expecting from our work.
1. To solve an combinatorial optimization with QA, we usually use the 

representation of the objective function as Ising/QUBO. 
2. It is less likely existing in real-world.
3. We propose a method to tackle any binary combinatorial 

optimization, by learning the QUBO representation dynamically.
• learn QUBO in a data-driven way by factorization machine
• optimize the constructed QUBO by QA

4. We can take the advantage of QA on wider variety of tasks.
• Harnessing the combinatorial explosion.
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Agenda

1. Algorithm of black-box optimization
2. Application on metamaterial design
3. Introduction to fmbqm
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Background: Black-box optimization

Black-box function   f receives some input x, and returns output value 
f (x), while other information such as analytical form of it or derivative 
with respect to x are not available.
Evaluation of  black-box function is often expensive.
• Efficiency of wind farm layout
• Stability of protein/molecular conformation
• Property of designed materials

Black-box optimization is to find x
which minimizes f (x) with as few
evaluations as possible.
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Background: Surrogate-based method

Surrogate-based method is an approach relying on regression model. 
1. Train a regression model  !f (x) based on dataset.
2. Find x which minimizes the trained model  !f (x). (← surrogate)

• Sometimes other index rather than the raw  !f (x) is used. 
3. On found x, we evaluate f (x) and join it to the dataset.
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Domain X is assumed to be binary vector space.

• Regression model can be trained by gradient descent.
(e.g. Adam [Kingma, Ba, 2014])
• Selection part suffers from combinatorial explosion ! (è" if QA)

For binary combinatorial optimization

Regression EvaluationSelectioninit. Regression Selection Evaluation
Define a training 
dataset

Train a regression 
model

Evaluate
and add data to

y

x⇤ = argmin
x2X

f̃(x)
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Regression by Factorization Machine

We used Factorization Machine (FM) [Rendle, 2012] as a regression model. 
The function have two types of model parameters, h and v.

It can be seen that the matrix representing  pairwise interaction term 
(QUBO’s  Qij) is approximated by a matrix V of rank K. The reduction 
of the number of parameters is intended to avoid overfitting problem. 
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Selection by quantum annealing

Because of the relationship between V and Q, FM model is easily 
converted to Quadratic Unconstrained Binary Optimization (QUBO) 
problem.

Solving the QUBO problem means, searching for x which minimizes
!f (x), from the binary vector space X.
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Proposed method

The surrogate-based black-
box optimization method we 
proposed is termed as FMQA.
This framework is applicable 
to any binary combinatorial 
optimization problems.
The problems related with 
model/QA accuracy should 
be inspected carefully, 
though.

Simulator

Use case for metamaterial design
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Bayesian Optimization (BO) is a popular surrogate-based method.

Generally, expressive power of Gaussian Process (GP) is stronger than 
that of FM. But GP does not scale well.
For selection part, FMQA is superior to BO for its use of QA rather than 
exhaustive search.

Comparison with existing method

FMQA (proposed) BO
Regression Factorization Machine (parametric) Gaussian Process (non-parametric)

Selection Quantum Annealing Exhaustive(+Random) Search
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1. Algorithm of black-box optimization
2. Application on metamaterial design
3. Introduction to fmbqm
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Automated metamaterial design

Metamaterial is material that...
• is composed of some basic materials
• has a special structure, to achieve an unusual property

The search space grows exponentially to the number of building-blocks.
How the structure affects the property is black-box function
The key is to automate and accelerate the process:
• Evaluation by computer simulation
• Learning by proposed method

Machine 
Learning Simulation

Experimental Design
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Demo case - Thermal radiator

Radiative cooling is an effect that the heat 
escape from body as emitting light. (well known 
for the temperature at night in desert) temperature ↓

We can use the effect for powerless cooling 
è Thermal radiator
Radiative cooling is most effective when the 
radiation spectrum concentrates on 
atmospheric window (8-13 μm wavelength).
The spectrum can be calculated by Rigorous 
Coupled-Wave Analysis (RCWA) simulation.
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The materials structure Our thermal radiator is 
designed as a stack of fibers of 
SiC, SiO2, and PMMA. The 
structure is nicely encoded 
into a binary array.
Only 1 type of Si-based fiber 
within a layer. (limitation by 
binary representation)
The concordance of the 
spectrum is calculated as a 
score called Figure of Merit 
(FOM), which should be 
maximized as close to 1.0 as 
possible.or
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Designing 4x3 structure

• FOM maximization on small size problem
• the number of layers L=4
• the number of columns C=3
• 16 bits for encoding

• Compared methods

• The main purpose is to compare FM and GP
• Exhaustive search (over 216=65536 candidates) can be conducted.

FM-Exh. BO Random
Regression FM GP None
Selection Exhaustive Exhaustive Random

0   1   0    0
1   0   0    0
0   1   1    0
0   1   1    1

The best structure
for this setting
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Designing 4x3 structure - result

This graph means the best 
FOM obtained within the 
numbers of samples.
The first 50 samples were 
taken at random on all 
methods as initial dataset.
Our method reached the 
best the fastest.One of the best structures

FM-Exh. BO Random
Reg. FM GP None
Sel. Exh. Exh. Random
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Designing 6x3 structure

• On middle size problem
• the number of layers L=6
• the number of columns C=3
• 24 bits for encoding

• Compared methods

• The main purpose is to check if our method scales by QA.
• Exhaustive search was not conducted due to the large search space.

FMQA BO Random
Regression FM GP None

Selection QA Exhaustive Random

1    0    0    1
0    0    1    0
0    1    0    0
0    0    1    0
0    0    0    0
0    1    1    1

The best structure
for this setting
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Almost default 
settings for QA

D-Wave 2000Q_2_1
num_reads = 50
anneal_time = 20us



Designing 6x3 structure - result

One of the best structures

The first 100 samples were taken at random as initial dataset.
FMQA worked fine as is in 4x3 structure.

FMQA Random
Reg. FM None
Sel. QA Random
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Designing larger structure

• On varied size problem
• the number of layers L=3,4,5,6,7,8,9
• the number of columns C=3,4,5,6,7,8,9
• up to 60 bits for encoding
• 2000 times of selection on all settings

• not enough for large problems

• Better structure than in literatures is found.
• FOM = 0.724
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Designing larger structure - result

• The best structure found showed the best concordance with the 
window function.
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Profiling of running time

A profile of running time for various 
problem sizes. 
• Evaluation - RCWA
• Regression - FM
• Selection - QA or Exhaustive

finding the next structure to try

With the exhaustive search, time for 
selection was dominant, while in our 
method it was reduced to constant.
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Summary & Conclusion

• We proposed  a new method for black-box optimization
to tackle any binary combinatorial optimization.
• FMQA is competitive with BO on small size problems,

and even works fine on larger problems.
• We have shown an example of application.
• automated materials discovery

• Now the bottleneck part is the evaluation part.
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fmbqm – An extension of  BQM

• fmbqm

• Based on BQM class from D-Wave 

Ocean SDK

• FM model is contained inside, and 

the parameter is trained on dataset

• FM part is implemented with Apache

MXNet

• Pre-release

• https://github.com/tsudalab/fmbqm
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Demo

• The target function
• Binary encoding of Integer
• The first bit represents sign

[0,0,0,1] => 1 
[0,0,1,0] => 2 
[0,1,0,0] => 4 
[1,0,0,1] => -1 
[1,0,1,0] => -2
[1,1,0,0] => -4

• Scaling to range [-1,1]
• Strong correlation between

sign bit and magnitude bits

def bin2int(x, scaling=True):
'''
Evaluation function for a binary array
to a signed integer
'''
val, n = 0, len(x)
for i in range(1,n):

val = (val << 1) + x[i]
if x[0] == 1:

val = -val
return val * (2**(1-n) if scaling else 1)
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Demo

• Generate initial dataset
• Train the model based on it

import numpy as np
from fmbqm import FMBQM

xs = np.random.randint(2, size=(5,16))
ys = np.array([bin2int(x) for x in xs])

model = FMBQM.from_data(xs, ys)Easy to train

16 bits length
5 data points
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Demo

• Repeat sampling and retraining of the model several times

import dimod
sampler = dimod.SimulatedAnnealingSampler()

for _ in range(15):
res = sampler.sample(model, num_reads=3)
new_xs = res.record['sample']
xs = np.r_[xs, new_xs]
ys = np.r_[ys, [bin2int(x) for x in new_xs]]
model.train(xs, ys)Easy to update

Sampling as easy
as original BQM
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Demo

History of sampling
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[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1]



Demo

• The reconstructed QUBO 
parameter
• Strong correlation between

sign bit and magnitude bits 
are retrieved.
• Upper bits are strongly 

forced to be [1,1,1,1...].
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Thank you for listening.

arXiv: 1902.06573
https://github.com/tsudalab/fmbqm

31


