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Overview of Research Program

o Non-Linear Integer Optimization

o GAMA: A Brand New Approach

o Compiling

o AQC and Gate (circuit) models

o Analysis of Speedup

o Real Applications

o Finance, Chemical Engineering, Cancer 
Genomics
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A New Approach is Needed

o Naive method of solving IP:

by a Quantum Annealer is to:

o 1) Convert non quadratic f(x) into 
o 2) Add constraint to quadratic and solve:

o which has balancing problem, and more.
o We want to do something very different!

xTQx + λ( Ax − b)T ( Ax − b)

min f (x)

Ax = b l ≤ x ≤ u

⎧
⎨
⎪

⎩⎪

xTQx
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GAMA: Hybrid Quantum- Classical 
Optimization

5

Calculate Graver Basis (Quantum-Classical)

Find Many Initial Feasible Solutions (Quantum)

Augmentation: Improve feasible solutions using 
Graver Basis (Classical)

Graver Augmented Multi-Seed Algorithm
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Hybrid Quantum-Classical Approach

(If stop with single quantum 
call, we get partial Graver 
basis.)

quantumD-Wave outputs stuff1 D-Wave outputs stuff2

classical
QUBO1 to get kernel 
elements

QUBO2 to get some feasible 
solutions

Embed into D-Wave Embed into D-Wave

Post-process to get some 

Graver basis elements .
Post-process to get some 

feasible solutions.

Start with any/many feasible solutions
Augment via (partial) Graver basis using f(x) computation
Stop when no improvement found

Report 
result(s)

min f (x)
Ax = b
x integer, non-negative

Ax = 0
x integer

Ax = b
x integer, non-negative



William Larimer Mellon, Founder

Background Material
Test Sets in Optimization

Graver Basis
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Test Sets in Optimization

o Nonlinear integer program:

o Can be solved via augmentation procedure:

1. Start from a feasible solution 
2. Search for augmentation direction to improve
3. If none exists, we are at an optimal solution.
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Definitions

o !" = 0 ;    Linear Frobenius problem
o 1. The lattice integer kernel of !:

     
L*( A) = x Ax = 0, x ∈Zn , A∈Zm×n⎧

⎨
⎩

⎫
⎬
⎭

\ 0{ }

  ∀x, y∈Rn x⊑ y s.t. xiyi ≥ 0 & xi ≤ yi ∀ i =1,...,n

 x⊑ y
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o 2. Partial Order

o " is conformal (minimal) to %,
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Partial order  ⊑

o x=
1
0
−1

⊑ % =
3
0
−2

, x is conformal to y

o
1
0
−1

⋢
3
0
2

, x and y are incomparable

o
1
0
−3

⋢
3
0
−2

, x and y are not conformal
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Definition: Graver Basis

o Finite set of conformal (minimal) elements in      
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Graver Basis is Test Set for:

o

o

o

o

o xTVx P(x)
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Graver Basis via Quantum 
Annealing

QUBO for Kernel
Sampling the Kernel

Post-processing Near-Optimal Solutions
Adaptive Centering and Encoding

Computational Results
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Hybrid Quantum- Classical Graver

1. Finding the lattice kernel         using many 
reads of quantum annealer : need a QUBO

2. Filtering conformal     (minimal) elements by 
comparisons, using classical computer

3. Repeating (1) and (2) while adjusting the 
“QUBO” variables in each run adaptively
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QUBO for Kernel 

o Integer to binary transformation:

o Binary encoding:

o Unary encoding:
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QUBO for Kernel….

(L is the lower bound vector)

o QUBO:
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Sampling for Kernel

o Each anneal starts with an independent uniform 
superposition (10000 per D-Wave call):

o Symmetry in QUBO (for arbitrary A) implies 
similar spread in valleys

o Techniques:
– Random column permutation
– Adaptive resource allocation chases the non-extracted 

solutions via control of center(lower) and width
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Post Processing

Experimental observation:

o Majority (~ 90%) of sub-optimal solutions have 
small overall sum-errors: most near-optimal!

o Post-processing: Systematic pairwise error vector 
addition and subtraction to yield zero columns of 
these near-optimal solutions

o Overall numerical complexity low (and polynomial) 
by limiting range of errors post-processed
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Non-Linear Integer 
Optimization on D-Wave

QUBO for Feasible Solution(s)
Hybrid Quantum- Classical Algorithm

Computational Results
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QUBO for Feasible Solutions

•

• Using adaptive centering and encoding width for 
feasibility bound

• Results in many feasible solutions!
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Capital Budgeting

• Important canonical Finance problem
• expected return
• variance
• risk
• Graver Basis in 1 D-Wave call (1 bit encoding)

when t = 1 we have:
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~ 6500 Solutions in One Call!

o From any feasible point in ~24-30 augmenting 
steps reach optimal cost = -3.69
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Non-binary Integer Variables

• Low span integer

• 2 Bit Encoding
• in 2 D-Wave calls
• 773 feasible solutions in one D-Wave call
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Augmenting…

o From any feasible points in ~20-34 augmenting 
steps, reach global optimal cost = -2.46

o Partial Graver Basis: One D-Wave call only

o 64 out of 773 feasible 
starting points end up at 
global solutions. 
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How to Surpass Best-in-Class 
Classical Methods?
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Gurobi Optimizer 8.0

o D-Wave: Chimera but improved coupler precision to handle
more unique J elements for 0-1 matrices.

o Random  
o “terms” designates cardinality of set of J values 
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How and Where to Surpass?

o If coupler precision doubles, with the same
number of qubits and connectivity, we can be
competitive on 0-1 problems and {0,...,t}
matrices of size 50.

o Pegasus can embed a size 180 problem with
shorter chains, should surpass Gurobi on
{0,1} matrices of sizes 120 to 180, without an
increase in precision.

o An order of magnitude increase in maximum
number of anneals per call.
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Thank You

Contact
stayur@cmu.edu


