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HARD PROBLEMS IN 
TELECOMMUNICATIONS

Resource allocation and planning problems in telecommunications 
are often algorithmically hard…  (e.g. NP hard or #P complete)

• Network layout problem (Steiner Tree)

• Job Scheduling

• Configuration of overlapping cells (placement, power, 
frequency assignment)

• Configurations of paths and wavelengths over core networks at 
layer 1 (RWA problem)



QCAPS Project 

Hard Computational Problems 
from Telecommunications 

Steiner Tree
Graph Colouring

Max-Cut Job Scheduling

D-Wave Approach to
Optimisation (experiment)
• Using 2000Q D-Wave Processor
• Quantum Annealing
• Initial review of similar previous work by Nasa
• Selection of promising problems.



Overview of problems

Infrastructure layout Using existing infrastructure such as ducts and poles, together 
with the possibility of creating new infrastructure, to provide or 
upgrade connectivity to new premises. (Steiner spanning tree) -
Simulated annealing approaches are typically used for these 
problems currently.
Location of cellular network base station. 

Network capacity Designing a network to have sufficient capacity to meet demand.
Utilising an existing network to maximise capacity

Network resilience Identification of paths with disjoint nodes and edges in a graph
Design of a network such that there are multiple paths over 
disjoint nodes and edges between each pair of endpoints.

Network security Optimum placement of deep packet inspection firewalls on a 
network
Graph search problems – identification of similar or of unusual 
clusters (identification of suspicious behaviour)

Content distribution Placement and size of content distribution nodes
Predictive downloads to content distribution nodes

Network operation and maintenance Location of service hubs
Location and volumes of spare network components
Priority and frequency of ‘uplift’ (scheduled, preventative 
maintenance)
Allocation of jobs to engineers
Geographic ordering of jobs (Travelling Salesman)



SUITABILITY FOR QUANTUM 
ANNEALING

• The problems described are discrete optimisation 
problems

• The state space is large, but can be represented in small 
number of bits

• Mapping the problem to qubits is tractable and allows us 
to find optimum and near optimum solutions. 



CELLULAR NETWORKS

• Coverage – placement and power of antenna

• Capacity – frequency assignment, interference management

• >These two issues may not be separable in the design problem

• Cell – Base Station power 

• Cell shape, distance, multipath, obstacle shadowing, antenna 
characteristics

• SIR > threshold



MANET - Half duplex mesh network problem

u MANET – Mobile Ad hoc Network.
u We consider a mesh network where intermediate devices relay data to 

provide complete communication services between all devices on the mesh.

u Applications: IoT, Environmental monitoring, Disaster areas
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MANET - Half duplex mesh network problem

u Half-duplex problem (mesh network of devices which can either send or 
receive on a single frequency)

u Problem of finding an optimum schedule
u Assume devices ‘boot up’ in a sub-optimal schedule, and can communicate 

their discovered neighbours to a central ‘optimising service’ which will will
communicate back a schedule.

u Devices can synchronise clocks. 
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MANET - Half duplex mesh network problem

u Half-duplex problem maps very naturally to the D-Wave annealer Ising form.
u Simple 1 logical qubit per device is sufficient.
u SEND (SCHED 0) = -1
u RECEIVE (SCHED 1) = 1
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MANET - Half duplex mesh network problem

u 2 connected node problem

u 3 connected node problem – frustration.

?



MANET - Half duplex mesh network problem

u 3 connected node problem – a solution 

u One link is disabled (frustrated link)
u (There will still need to be arbitration in the protocol, e.g. handshaking 

because one node communicates with two others)



MANET - Half duplex mesh network problem

u The code is straightforward – we pass the logical Ising Hamiltonian values in 
a JSON string

u Dwave provides a classical function which handles the embedding of the 
logical Hamiltonian onto the physical qubits. (Although we can optionally run 
this many times, and select ‘the best’ embeddings’)

u Run the solver.

u The results are returned as list of measured spin values for each qubit.

J = {(0, 1): 1, (1, 2): 1, (0, 2): 1}
h = [0, 0, 0]

# Get the geometry of the hardware
adj = get_hardware_adjacency(solver)
# Find an embedding for the problem.
emb = find_embedding(J, adj)

answer = solve_ising(solver, h_emb, J_emb, **dw_params)



MANET - Half duplex mesh network problem

u 2000Q architecture is suitable for embedding and solving 100 node mesh 
network problems of realistic graph density.

Optimising the Half Duplex Mesh is NP Hard!



MANET - Half duplex mesh network problem

300 Node Graph

Optimum solution for a 300 node graph, found by D-Wave and verified classically.



Finding Exact Optimum

u Percentage of anneals that return exact optimum over a range of problem 
sizes between 20 and 100 logical cells.



Finding Near Optimum (>95% of optimum)

u Percentage of anneals that return >95% optimum over a range of problem 
sizes between 20 and 300 nodes.



Finding Near Optimum (>90% of optimum)

u Percentage of anneals that return >90% optimum over a range of problem 
sizes between 20 and 300 nodes.



Best allocation n-colouring

u When colouring a graph with a large number of colours, (frequencies) and 
varying demand – how best to allocate channels to satisfy demand?



Cell Channel Allocation Problem

1. Each cell is represented by a complete graph of qubits 
- one qubit for each available channel.

- Demand on each cell can be mapped onto the complete graph. That is, we 
set the coupling values such that the minima of the isolated Hamiltonian 
corresponds to a channel allocation that meets but does not exceed the ideal 
demand, for n channels.

- To express the objective that optimum available channels to meet demand 
is		𝑁

- 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	 (∑𝑄.) − 𝑁 1



Cell Channel Allocation Problem

Transform QUBO y3 ∈ 0,1 	to Ising s3 ∈ −1,1 	form: 

- Transformation: 𝑦. =
:;<=
1

Substitute this into the QUBO

- 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	 ∑ :;<=
1

− 𝑁.
1

Expand, and note that for both 𝑠. = 1 and 𝑠. = −1, 𝑠.1 = 1
- 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	 ∑ 𝑠. ∗ 𝑠?�

.A? + ∑ 𝑀 − 2𝑁 𝑠.�
. + 𝑐𝑜𝑛𝑠𝑡 where M is number of colours

Constant terms can be dropped 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	 G𝑠. ∗ 𝑠?

�

.A?

+G 𝑀 − 2𝑁. 𝑠.

�

.

Qubo terms, where N_i is the channel demand 
of cell i: 

- 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	 ∑𝑄. − 𝑁.
1

- We can add further details such as penalising onsite energies corresponding to 
frequencies that don’t perform well for that cell.



Cell Channel Allocation Problem

2. 

The constraint on neighbouring cells not taking the same frequency 
is obtained by a 1:1 mapping between the same channels between graphs, 
which we couple with a strong antiferromagnetic value (J>1).



Small Tests of Cell Allocation Problem:
3 cells, even distribution

Each	cell:
𝑀 = 3, 𝑁 = 1 , 𝑀 − 2𝑁 = 1, 

𝑖, 𝑗 ∈ {0,1,2}

→ G𝑠. ∗ 𝑠?

�

.A?

+G𝑠.

�

.

Cell	interference	graph	terms:
𝐾^_ = 1	𝑖𝑓	𝑐𝑒𝑙𝑙𝑠	𝐼	𝑎𝑛𝑑	𝐽	𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒

𝐼, 𝐽 ∈ {𝐶𝑒𝑙𝑙𝑠}

→ 𝐾^_G G 𝑠^<h ∗ 𝑠_<h

�

hij..l

�

^A_

Overall:

M𝑖𝑛𝑖𝑚𝑖𝑠𝑒 G𝑠. ∗ 𝑠?

�

.A?

+G𝑠.

�

.

+ 𝐾^_G G 𝑠^<h ∗ 𝑠_<h

�

hij..l

�

^A_



Small Tests of Cell Allocation Problem:
4 cells, one with high demand

𝑀 = 5, 𝑁^ij = 2, 𝑁^∈{=,1,q} = 1 , 𝑀 − 2𝑁=,1,q = 3, 𝑀 − 2𝑁j = 1
𝑖, 𝑗 ∈ {0,1,2,3,4}

Cell with high demand ∑ 𝑠. ∗ 𝑠?�
.A? + ∑ 𝑠.�

.∈{=,1,q}
Cells with normal demand ∑ 𝑠. ∗ 𝑠?�

.A? + 3∑ 𝑠.�
.∈{=,1,q}

Adjust	the	previous	problem	to	penalise	use	of	channels	which	are	‘bad’	for	the	cell,	
by	use	of		a	quality	factor	qi.	

Cell with high demand ∑ 𝑠. ∗ 𝑠?�
.A? + 𝑞. ∑ 𝑠.�

.∈{=,1,q}

Cells with normal demand ∑ 𝑠. ∗ 𝑠?�
.A? + 𝑞.3∑ 𝑠.�

.∈{=,1,q}



Vertex-diverse routing



Partially vertex disjoint paths on a ‘core’ model



Vertex-disjoint routing: Useful problems to solve

u What is the best set of partially disjoint paths between nodes s and t?

u What if... the probability of node compromise is different for each node?

u What if... we group the nodes into ‘shared risk groups’ which will all be 
compromised together?

u What if…we want to load balance across all a subset of nodes (which we 
define as the network edges) – and we want to find an optimum set of partially 
diverse routes between all pairs in this set, and we make the rule that nodes 
cannot be shared?

...and we can look at all the same problems, but for edge-disjointness 



Hard problems we are trialling with DWave

u Half duplex mesh network

u Cell channel allocation

u Routing and Wavelength Assignment

u Network resilience – disjoint path routing

u Job shop scheduling

u Malicious traffic flow propagation and defensive strategies
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Conclusions

u D-Wave reliably generates near optimums using a small number of 
anneal cycles.

u Many discrete optimisation problems from the telecommunication industry 
map very well to the D-Wave

u If this performance can be maintained for larger processors, D-Wave will be a 
significant technology for this industry.

u Chain-length minimisation is a big issue. Hierarchical connectivity or 
bespoke architectures could be an interesting approach.

u Suggestion: D-Wave could make their built-in functions very flexible, i.e. 
provide variations on Graph Colouring to allow n-color allocation, and to 
provide preference on allocated color.
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