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Overview

Investigations of quantum computing were originally motivated by the
possibility of e�ciently simulating quantum systems. Here we approach
this challenge using a D-Wave 2000Q system to estimate quantum
Boltzmann statistics. We compare performance with state-of-the-art
classical Monte Carlo simulations of the quantum systems, and �nd
that, over the problems studied, the D-Wave processor realizes a per-
formance advantage over classical methods that increases with simu-
lated system size.
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Summary

Quantum annealing—the computational model on which
D-Wave quantum computers are based—works by gradually
evolving a many-body quantum system from one that is easy
to characterize to one that is hard to characterize. Efficient
open-system sampling in this model requires fast evolution
of the quantum system.

Here we investigate whether a D-Wave 2000Q quantum pro-
cessing unit (QPU) achieves this goal. Specifically, we seek to
accurately sample from its quantum Boltzmann distribution—
a probability distribution that essentially describes the
system—at an intermediate point in the annealing process. In
order to gather mid-anneal samples as faithfully as possible
we employ two newly available features of the QPU: pause,
which pauses the anneal at a certain point, and quench, which
abruptly ends the anneal by raising classical energy barriers
as quickly as possible.

To determine whether the QPU offers an efficient means of
producing quantum Boltzmann distributions, we compare
its performance against two quantum Monte Carlo (QMC)

estimators employing continuous-time path-integral Monte
Carlo with periodic boundary conditions. The first is a QMC
simulation of the QA processor, SQA. The second is a state-
of-the-art implementation of parallel tempering in QMC, PT-
QMC. The figure of merit for the classical QMC estimators
is the amount of work required to achieve the same error—
average error in correlations among coupled spin pairs—as
the D-Wave QPU. The QPU and QMC estimators take statis-
tics over multiple samples drawn, and PT-QMC gleans statis-
tics from a sequential interval of states.

Our results show a clear scaling advantage versus both PT-
QMC and SQA in terms of computational resources required
by software to match the error achieved by the QPU, as mea-
sured in Monte Carlo spin updates (see figure below). This
translates to an absolute computation time advantage of over
104 for the QPU, for the largest problems studied. In terms
of Monte Carlo sweeps required, a measure more suited to the
study of underlying mechanics rather than benchmarking,
we see a clear scaling advantage over PT-QMC and a possible
scaling advantage over SQA.
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Estimator Time at s∗ = 0.32 D-Wave advantage Independent runs
D-Wave QPU 2.56× 104 µs (anneal stage) 1 x 1000

SQA 2.05× 109 µs (anneal stage) 8.1× 104 x 1000
PT-QMC 7.69× 107 µs 3.0× 103 x 1

(Left) Mean error in spin-spin correlations achieved by 80 µs anneals from the D-Wave processor is measured, then SQA and PT-QMC estimators
must match that error. The D-Wave QPU and SQA take 1000 samples each to ensure that sampling error is small. (Right) QMC and the D-Wave
system are both used to evolve a fixed system from a non-equilibrium initial state. QMC updates needed to match performance of a fixed 1 µs
pause in the D-Wave system increase with system size. Table summarizes runtimes for largest instances (2033 spins). Data shown represent
median over 100 instances of each size.
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1 Introduction
In open-system quantum annealing (QA), the time-dependent Hamiltonian is typically
evolved from a simple initial quantum Hamiltonian to a complex final classical Hamil-
tonian by gradual reduction of quantum fluctuations and increase of classical energy scale
[1–5]. Physical realizations of this computing paradigm [6, 7] have spurred a body of em-
pirical research, most of which considers the ability of QA to sample the low-energy states
of the final Hamiltonian. These states may or may not coincide with low-energy states
of the Hamiltonian at an intermediate point in the anneal after the quasistatic region, re-
sulting in a signature bimodal distribution of ground state probability in QA and related
models for certain input families [8–11]. More generally, QA produces statistics that are
non-Boltzmann with respect to the final Hamiltonian, due to differences between the eigen-
vectors of the instantaneous and final Hamiltonians in the quasistatic region [8, 11–19].

In this paper we instead look at the quantum Boltzmann distributions of the time-dependent
Hamiltonian at intermediate points in the anneal, where eigenstates of the system are sam-
pled according to their energies, then projected to the computational basis [20]. We es-
timate marginal statistics of these distributions using QA as implemented in a D-Wave
2000Q quantum processing unit (QPU), and two algorithms based on continuous-time
quantum Monte Carlo (CTQMC) methods: simulated quantum annealing (SQA), which
seeks to simulate QA as faithfully as possible within the CTQMC framework, and paral-
lel tempering quantum Monte Carlo (PT-QMC), a more powerful algorithm based on the
exchange Monte Carlo approach.

While previous empirical work has identified only a constant factor advantage in compu-
tation time when comparing QA with SQA [21], recent work has identified situations in
which QMC cannot simulate QA tunneling in the incoherent regime [22]. In our experi-
ments we see a computational advantage that increases with system size over both SQA
and PT-QMC. This indicates that SQA does not provide an accurate simulation of QA dy-
namics in the region of interest.

Inference of quantum Boltzmann statistics can be used for tasks such as quantum Boltz-
mann machine learning [20, 23, 24] and molecular simulations [25].

2 Monte Carlo estimators for the quantum
Boltzmann distribution
We consider the standard 2-local stoquastic Hamiltonian in the transverse-field Ising model,
with the Hamiltonian

H(A, B) = − 1
2 A

n

∑
i=1

σx
i + 1

2 BHP (1)

HP =
n

∑
i=1

hiσ
z
i + ∑

1≤i<j≤n
Jijσ

z
i σz

j , (2)

where σx
i and σz

i are Pauli matrices acting on qubit i, and where hi and Jij are dimension-
less parameters. This is a generalization of the Hamiltonian typically used for quantum
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Figure 1: Quantum annealing schedule for the D-Wave 2000Q QPU system. Physical temperature is
T = 12.8 mK.

annealing, since arbitrary nonnegative real values of A and B are permitted.

In quantum annealing, the Hamiltonian is described by an annealing parameter s that runs
between 0 and 1, defining A = A(s), B = B(s), and H(s) = H(A(s), B(s)). In this case
A(s) and B(s) are monotonic, with A(0) � B(0) ≈ 0 and B(1) � A(1) ≈ 0. Figure
1 shows the parameterized schedule for the D-Wave 2000Q system used in this work. In
order to reconcile physical and simulated systems, we consider A and B as dimensionless
parameters relative to a physical temperature, in this case T = 12.8 mK, as depicted in
Figure 2.

2.1 Quantum Boltzmann distribution

For a system of n qubits we have a 2n-dimensional state space, often described in terms of
the energy basis (2n orthonormal eigenvectors of H(s)) or the computational basis (2n or-
thonormal eigenvectors of HP, specifically the 2n classical states {−1, 1}n). We denote the
energy basis as ψ1, ψ2, . . . , ψ2n ; these eigenvectors of H(s) have respective energies (eigen-
values) λ1, λ2, . . . , λ2n . The probability of observing an eigenstate ψi is given by

Pr[ψi] = e−βλi /Z (3)

where β = 1
kBT is the inverse temperature and Z = ∑2n

i=1 e−βλi is the partition function. The
Boltzmann distribution DB is defined by the set of all probabilities given by Eq. (3) for all i.

Since we are restricted to observing computational basis states {φ1, φ2, . . . , φ2n}, we project
each eigenstate ψi to the computational basis, obtaining

Pr[φi] =
1
Z

2n

∑
j=1
〈φi|ψj〉2 eβλj . (4)

We define the term quantum Boltzmann distribution DQB by the set of probabilities given
by Eq. (4) for all i. Note that the quantum Boltzmann distribution becomes identical to the
Boltzmann distribution in the classical limit when the energy eigenstates ψi correspond to
classical spin states φi.

Copyright © D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling 2
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Figure 2: Quantum annealing schedule given in terms of dimensionless parameters βA(s) and βB(s)
with β = 1

kBT and T = 12.8 mK. Early in the anneal the system is a quasistatic quantum superposition
with very fast dynamics. Late in the anneal the system’s dynamics become very slow, and the sys-
tem closely resembles the classical system defined by HP. We focus on an intermediate region with
moderate dynamics that is hard to sample from and distinct from the classical system.

When simulating large quantum systems, it is impractical to determine the closeness of an
observed spin state distribution Dobs to the true quantum Boltzmann distribution DQB us-
ing exhaustive means such as the Kullback-Leibler divergence. Instead we consider mean
error on the expected spin-spin correlations E(xixj) for coupled pairs. When transverse
expectations 〈σx

i 〉 are known—this includes the classical case—these correlations are suffi-
cient statistics for deriving the Boltzmann distribution [26] 1:

Err(Dobs) :=
||Dobs − DQB||

# nonzero couplers
(5)

=
∑{i,j|Jij 6=0} |Eobs(xixj)− EQB(xixj)|

# nonzero couplers
. (6)

Figure 3 shows the evolution of correlations in DQB for two small example systems.

2.2 Monte Carlo methods

Our three heuristic estimation methods are built on the foundation of the continuous-time
Suzuki-Trotter decomposition model, applying CTQMC [27] with Swendsen-Wang Monte
Carlo updates [28, 29]. The three methods are, briefly:

QA. Generate statistics from H(s∗) using the D-Wave QPU. To sample at s∗, the system is
annealed from s = 0 to s = s∗ and then quenched to s = 1. Details regarding the quench
are presented in Section 2.3. Output samples are classical; we postprocess these classical
states to nearby Suzuki-Trotter states with nPP = 16 sweeps of CTQMC.

1The systems studied have no fields, so we disregard magnetizations, which are always zero in the target
distribution.
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Figure 3: Spin-spin correlations in the quantum Boltzmann distribution for two 24-qubit instances,
(left) with no ground-state degeneracy (up to symmetry) and (right) with many-fold ground-state
degeneracy. For illustrative purposes each correlation is multiplied by the sign of the coupler, so 1 and
−1 correspond to no frustration and total frustration, respectively. Spin pairs go from uncorrelated
at s ≈ 0 to highly correlated at s ≈ 1.

We gather mean statistics over multiple annealing runs such that sampling error is small
compared to error in the distribution. In the ideal case, errors should decline as anneal time
increases, up to the point where systematic QA errors become dominant.

SQA. Generate statistics from H(s∗) by simulating QA, running CTQMC at a fixed rate of
RSQA sweeps per unit anneal, meaning RSQA · s∗ sweeps where sweep i is performed using
H(i/RSQA). We simulate projective readout and recovery by reading a single Trotter slice
and postprocessing as in the QA estimator.

As with QA, we gather multiple samples and focus on distribution error; SQA errors will
again decline as anneal time increases, but with SQA we are guaranteed that the limit dis-
tribution is the correct quantum Boltzmann distribution.

PT-QMC. Generate statistics from H(s∗) via parallel tempering QMC (PT-QMC), in which
a chain of models is evolved under QMC in parallel; model exchanges are performed main-
taining detailed balance, as in parallel tempering. Unlike SQA, here the chain of models
needs not resemble the QA schedule (see Section 2.4).

With PT-QMC we need not run multiple experiments. Rather, we gather statistics over a
swath of sweeps (the second half of the entire run, whereas the first half is used for “burn-
in”). As the swath grows, errors will decline, eventually reaching an asymptote as sampling
error becomes dominant (see Figure 5).

Figures 4 and 5 show how each estimator reacts to a sweep of its principal parameter. For
QA and SQA the respective parameters are anneal time ta and sweep rate RSQA. For PT-

Copyright © D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling 4
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Figure 4: QA (left) and SQA (right) estimator errors on correlations at s∗ = 0.32 decline as the esti-
mator anneal length increases. Shown are 75th percentile, median, and 25th percentile of mean corre-
lation error over 100 128-qubit instances, with error bars representing 95% confidence interval in the
quantiles. When QA is run as fast as possible (ta = 5 µs), error is similar to SQA run at RSQA = 3200
sweeps per anneal, but lengthening SQA runs is more valuable than the corresponding lengthening
of QA runs. This indicates at least one of three possibilities: SQA is equilibrating much faster than
QA, QA is equilibrating to the wrong distribution, or the QA distribution is distorted by the quench.
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Figure 5: PT-QMC errors on correlations at s∗ = 0.32 decline as the estimator run length increases.
Shown are quartiles as in Figure 4, averaged over 20 runs for each instance. Asymptotic decay of
error proportional to square root of run length (slope of diagonal reference line) indicates declining
sampling error approaching a sufficiently accurate ground truth distribution.
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QMC the principal parameter is the number of sweeps. We discuss these results in greater
detail in Section 4.

Errors of these estimators are measured with respect to a much stronger estimate that we
hold as a ground truth; we generate ground truths using PT-QMC with multiple long, inde-
pendent runs.

2.3 Nonstandard annealing protocols

The D-Wave 2000Q system allows the user to terminate the anneal quickly using the quench
feature. At the cost of some distortion, we can complete the anneal by increasing the an-
nealing parameter s at a rate ds

dt ≤
1

µs (equivalent rate to a 1 µs anneal), significantly faster
than the background annealing rate. We use this quench to freeze the system at an inter-
mediate point in the anneal—a best attempt at projective readout.

In a standard QA or SQA anneal where H(s) = H(A(s), B(s)), the classical target model
H(1) is approached by growing the annealing parameter s linearly in time from 0 to 1,
with s = t/ta where ta is the background anneal rate. To define a protocol with quench,
we consider the situation in which s grows as s = t/ta for t ≤ t∗, then ramps linearly from
t∗/ta to 1 at a rate of ta/5 to quench the system, approximating the system at s∗ = t∗/ta.
We can optionally pause the system at s∗ before quenching. This allows equilibration of the
system at s∗, and reduces errors associated with rapid quenching. Figure 6 shows sample
protocols employing the pause and quench features.

In order for these protocols to give a faithful simulation of projective readout, low-energy
dynamics of the system must be slow relative to the timescales of the quench. The extent
to which this holds is the subject of ongoing research.

2.4 PT-QMC model sequences

QA is restricted to a one-dimensional path in (A, B)-space parameterized by s. SQA, being
a faithful CTQMC simulation of QA, is also restricted to this path. In contrast, PT-QMC
only has its target model (A(s∗), B(s∗)) restricted to lie on this path, and can approach the
target model along any set of models in (A, B)-space. Figure 7 shows the (A(s), B(s)) path
and several reasonable choices of model paths for PT-QMC. When quickly estimating a
single model we used the temperature approach, and when determining ground truths we
used a combination of paths. Along a given path we choose a model sequence in a standard
way, requiring significant exchange rates [30].

3 Testbed for Hp: AC3 spin-glass ensemble over
Chimera graphs
The available couplings in the QA system form a Chimera graph CL [7], characterized by an
L× L lattice of unit cells, each inducing a complete bipartite graph with four qubits on each

Copyright © D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling 6
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side, totaling 8L2 qubits. The current generation of D-Wave processor has L = 16, where
previous generations had L = 12 (2015), L = 8 (2013), and L = 4 (2011).

Much attention has been given to random bimodal instances on CL, where ~h = ~0 and
Jij ∈ {+1,−1} for available couplers. This ensemble suffers from systematic domain for-
mation in unit cells [9], which makes the instances relatively easier to solve by classical
means. We therefore adopt the anticluster ensemble ACk [31, 32], where intra-cell couplers
are given uniform random values from {+ 1

k ,− 1
k} and inter-cell couplers are given uni-

form random values from {+1,−1}. In the limit of k→ ∞ this ensemble is combinatorially
equivalent to the Sherrington-Kirkpatrick model on complete bipartite graph K4L,4L; due to
limits on coupling energy and temperature we set k = 3, offering partial relief from quasi-
two-dimensionality and unit-cell domain formation in the systems studied. We study 100
instances of each size from L = 4 to L = 16.

4 Results
In Figure 4 we see that over 100 128-qubit instances, the QA estimator shows a weaker
response than the SQA estimator to increased anneal time. One reason for this is that these
C4 instances are relatively small and easy, so SQA can reach an accurate distribution in a
reasonable amount of time, whereas QA inevitably hits a nonzero error floor due to sys-
tematic noise and other nonidealities including evolution of the system during the ramp.
For larger problems, up to C16, SQA relaxation is much slower. Here we compare the per-
formance scaling of all three estimators—QA, SQA, and PT-QMC—with respect to system
size.

We take two separate approaches:

1. We consider the QA estimator using a quench protocol with fixed background anneal

Copyright © D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling 8



time, and examine what resources SQA and PT-QMC require to match the perfor-
mance of QA.

2. We consider the QA estimator using pause and quench, and compare with QMC evo-
lution of a fixed Hamiltonian H(s∗) as a Monte Carlo analog of pause. We determine
what resources are required for this static QMC approach to match performance of
the QA system as the pause increases.

4.1 Resources required to match QA performance

For the first approach, we fix a point s∗ ∈ {0.27, 0.30, 0.32} in the region of interest and
measure the resources required by SQA and PT-QMC to estimate correlations with the
same accuracy as QA with fixed ta = 80 µs (Figures 8 and 9).2

Figure 8 shows resources required for SQA to match QA in terms of both Monte Carlo
sweep rates and spin updates—the cost of a Monte Carlo sweep in terms of spin updates
grows linearly with system size. At s∗ = 0.32, where dynamics are slowest and we can
expect less distortion from quench, computational advantage of QA over SQA grows with
system size over the range shown. As s∗ increases, generation of reliable ground truths
becomes prohibitively expensive for large problems. Figure 9 shows analogous data for
PT-QMC; here we see a clear scaling advantage for the QA estimator over PT-QMC over
the system sizes studied.

4.2 Relaxation of QA and SQA

For the second approach, we seek to observe relaxation of a many-body quantum system
H(s∗) in a D-Wave system and compare this relaxation rate with quantum Monte Carlo
methods. Direct observation of this relaxation is currently impractical for large systems. As
an indirect method of observation, we employ a QA protocol with quench at s∗ following
a pause of varying length, and consider how the statistics of the output distribution vary
with pause length. In this context we want to quantify the relative value of a pause in QA
versus a pause in QMC (static equilibrating QMC).

Figure 10 shows declining correlation error in both QMC and QA at s∗ = 0.32. To seed
QMC relaxation we use QA runs that use a 5 µs background anneal with no pause. For
small problems, the pause lengths studied are sufficient to drive QMC error close to zero,
whereas QA does not approach zero error over the pause lengths studied. Nor do we ex-
pect QA to approach zero error: any systematic errors or systematic problems with the
quench protocol—which exist but have not been characterized in depth—will cause QA
to equilibrate towards a biased distribution. Despite this, relaxation in the D-Wave system
is still powerful enough to show a computational advantage that grows with system size.
This advantage is shown in Figure 11.

2This is analogous to the time-to-target metric [32] in which heuristic algorithms are required to match perfor-
mance of QA.
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Figure 8: SQA resources required to match QA error at fixed ta = 80 µs, measured in Monte Carlo
spin updates (top) and Monte Carlo sweeps (bottom). Spin updates correspond linearly to compu-
tation time for a single core, while sweeps correspond to computation time for a theoretical classical
computer with arbitrarily many processors and idealized parallelization. The QA estimator shows
greater computational advantage later in the anneal. The effect of 16 sweeps of postprocessing for
the QA estimator is significant for small problems at early s but negligible for large problems, which
may be the cause of the negative scaling seen for s = 0.27 in sweeps.
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Figure 9: PT-QMC resources required to match QA error at fixed ta = 80 µs, measured in Monte
Carlo spin updates (top) and Monte Carlo sweeps totaled over all models (bottom). For PT-QMC
each Monte Carlo sweep must update multiple replicas, leading to order n3/2 updates per sweep in
an n-qubit problem. As in Figure 8 we see negative scaling for small problems; in this case, we see the
effect of sampling error in PT-QMC dominating where distribution error is small. This phenomenon
disappears for larger problems. In both sweeps and spin updates we see a scaling advantage in the
QA estimator over PT-QMC.
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Figure 10: Comparison of static equilibrating QMC (top) and QA (bottom) relaxation at s∗ = 0.32.
For C4 instances (128-qubit problems) we see that QMC gets close to zero error in the allotted num-
ber of sweeps (216), while QA appears to asymptote at nonzero error due to systematic biases and
nonidealities in the quench protocol. As the problems get larger, QMC requires increasing resources
to match performance of QA at a fixed pause length (see Figure 11).

Copyright © D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling 12



128 512 1152 2048104

105

106

107

108

Problem size (qubits)

Q
M

C
sp

in
up

da
te

s
re

qu
ir

ed
to

m
at

ch
1

µs
Q

A

QMC/QA equivalent rates (updates/µs)

25 %ile
Median
75 %ile

128 512 1152 2048
102

103

104

105

Problem size (qubits)

Q
M

C
sw

ee
ps

re
qu

ir
ed

to
m

at
ch

1
µs

Q
A

QMC/QA equivalent rates (sweeps/µs)

25 %ile
Median
75 %ile

Figure 11: Equivalent relaxation rates between QMC and QA pause at s∗ = 0.32. For each problem
size and each quartile, QMC and QA errors are compared at the midpoint of the mutual range, where
data from Figure 10 are interpolated. Results indicate that QMC needs to do as much work to match
1 µs of QA relaxation as to match an 80 µs anneal, suggesting that the pause protocol can increase
relative performance of the QPU.
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4.3 Complexity of Monte Carlo methods

We have shown results for SQA (Figure 8), PT-QMC (Figure 9), and static equilibrating
QMC (Figure 11). All three methods have a continuous-time QMC spin update as the fun-
damental operation. Here we provide a rough analysis of how many spin updates are re-
quired by each method, and how much time is associated with the dominant stages of
computation. Timings are for a single-core implementation on an Intel® Core™ i7-3520M
2.90GHz processor; all times are reported in seconds.

Time per QMC spin update is a function of the set of simulated models {(βA(s), βB(s))}
and the problem Hamiltonian. An important term in our applications is βA(s), which con-
trols the typical number of breaks in imaginary time, so that CPU time per spin update is
approximately linear in this quantity [27]. The CPU time for a full sweep in a given model
is the time per spin update multiplied by the number of spins, n.

4.3.1 SQA

An SQA estimator has several costs: initialization time, anneal-stage time, and postpro-
cessing time. An estimator is constructed by averaging over independent anneals, and we
used 1000 samples3.

For SQA we find a per-sample anneal-stage time tSQA(RSQA, s0, s∗) as a function of the
sweep rate RSQA per unit anneal, and the initial and target points s0 and s∗ in the anneal
schedule. This time is described for all problems by

tSQA(RSQA, s0, s∗) = t(0)SQA + t(1)SQA(s0, s∗) · n · RSQA · (s∗ − s0),

where t(0)SQA is the initialization time, t(1)SQA(s0, s∗) is the average time of a spin update be-
tween the prepared state at s0 and the target state at s∗, and n ·RSQA · (s∗− s0) is the number
of spin updates. In practice the initial state needs not be at s = 0: we can easily prepare an
equilibrium state at s0 ∼ 0.2.4 Preparing an equilibrium state at s0 > 0 significantly de-
creases the number of updates in SQA for all but the lowest rates, and does not impact
rate to error results. Specifically for C16 (n = 2033), we find s0 = 0.20 to be suitable for all
instances. Table 1 presents some timings for SQA to match QA error on C16 problems.

4.3.2 PT-QMC

For PT-QMC we have a full-estimator time rather than a time per sample. A simple de-
scription for a run of S sweeps on nmodels models is

tPT-QMC(S, s∗) = t(0)PT-QMC + t(1)PT-QMC(s
∗) · n · nmodels · S,

3This is not an optimized quantity; we chose a large value to make sampling error negligible in comparison to
distribution bias. Except for s∗ = 0.27 and the smallest systems (C4), error in the distribution is indeed dominated
by bias.

4The initial value is determined by a threshold on the autocorrelation time, with a weak dependence on the
problem instance and system size. With a small number of sweeps we can prepare the state, owing to fast mixing.
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RSQA chosen to match Mean tSQA(RSQA, s0, s∗)
s∗ t(1)SQA(s

∗) QA at 80 µs anneal rate per sample
0.27 1.24× 10−6 3.76× 103 9.58× (0.27− 0.20)
0.30 1.14× 10−6 5.01× 103 13.0× (0.30− 0.20)
0.32 1.09× 10−6 7.63× 103 17.1× (0.32− 0.20)

Table 1: Timing data for SQA, with rate RSQA chosen to match QA estimator error and s0 = 0.20 on

C16 problems (2033 qubits). Initialization time t(0)SQA is ignored.

S chosen to match
s∗ nmodels t(1)PT−QMC(s

∗) QA at 80 µs anneal tate Mean tPT-QMC(S, s∗)
0.27 1.53× 102 5.15× 10−7 4.08× 102 65.8
0.30 1.35× 102 4.14× 10−7 5.68× 102 65.4
0.32 1.26× 102 3.54× 10−7 8.57× 102 76.9

Table 2: Timing data for PT-QMC on C16 instances, with number of sweeps S chosen to match per-
formance of QA at an anneal rate of 80 µs.

where t(1)PT−QMC(s
∗) is the average time of a spin update over all models, and n · nmodels · S

is the number of spin updates used by the estimator.5 We used a precalibrated spacing of
models for each problem size, which requires some work. However, calibrating models is
a significantly easier task than estimating correlations and the work need not be repeated
in full for every instance, so we exclude this cost in our analysis. Table 2 gives timing data
for the PT-QMC estimator on C16 instances.

4.3.3 Static QMC

The cost of static QMC, run for a duration of S sweeps starting from a classical state, takes
the form

tQMC(S, s∗) = t(0)QMC + t(1)QMC(s
∗) · n · S,

where tQMC(s∗) is the time of a QMC spin update at s∗. Accordingly, the cost of postpro-
cessing a sample for nPP sweeps at s∗ is tQMC(nPP, s∗). Table 3 gives timing data for static
QMC, including as a 16-sweep postprocessor.

4.3.4 Timed comparisons

For QA we have presented results for a baseline anneal time t(1)a = 80 µs. The per-sample
anneal-stage time at s∗ is

ta(s∗) = t(0)a + t(1)a · s∗,
5The number of models takes the form nmodels = kPT(s∗)n1/2. This asymptotic scaling arises from the exten-

sivity of the specific heat along the model path [30]; kPT increases with s∗ because the gap between the uniform
distribution on classical states (βA, βB) = (0, 0) and the target distribution grows. Energy fluctuations are larger
with respect to variation of β at small s∗, so we need more models to bridge the gap.
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s∗ βA(s) t(1)QMC(s
∗) t(1)QMC(s

∗) · n · 16
0.27 4.68 1.70× 10−6 0.059
0.30 4.01 1.37× 10−6 0.048
0.32 3.60 1.17× 10−6 0.041

Table 3: Timing data for static QMC run on C16 instances. The rightmost column shows timings for
QMC run as a postprocessor for S = 16 sweeps.

where t(0)a is the initial state preparation time. The initial condition for the algorithm is
s0 = 0, where the state is prepared as a uniform superposition.

To drive down the bias in SQA or QA we can increase the parameters RSQA and t1
a. Tuning

RSQA so that SQA and QA give the same error, we see a significant advantage to QA. This
advantage is diminished once fixed time overheads, post-processing and/or parallelization
of SQA are considered.

PT-QMC is very efficient in driving to extremely low error thresholds, unlike SQA and
QA, hence our use of PT-QMC for ground-truth estimation in this study. QA is currently
limited in the error it can achieve; SQA is also limited on practical timescales. However,
for the intermediate error ranges QA is increasingly competitive as system size increases.
At C16 system size the PT-QMC time to error is large compared to the per-sample anneal-
stage times. The annealing estimators require multiple samples, and QA further requires
quench time and postprocessing, which diminish this advantage. In order to make a mean-
ingful comparison in real time one should optimize these elements, thereby accounting for
realistic elemental time-scales and sampling error.

5 Conclusions
In this paper we implemented two state-of-the-art classical estimators for quantum Boltz-
mann distributions: SQA and PT-QMC using continuous-time quantum Monte Carlo with
Swendsen-Wang cluster updates. We compared the performance of these estimators with
one employing a D-Wave 2000Q QPU using two newly-available features: pause and quench.

Annealing protocols based on pause and quench give us two ways to race the QA estimator
against classical competition. In the first, we anneal at a fixed moderate rate, then quench
at the point of the target distribution. In the second, we anneal quickly to the target point
and pause the annealer to observe relaxation rates in the QA system. In both protocols
we observe an absolute computational advantage over PT-QMC and SQA that grows with
system size. When comparing annealing rates with QMC sweeps rather than QMC spin
updates, we see a marginal advantage that is likely to improve as systematic errors are
identified and compensated.

For small systems, we observe that the QA estimator, unlike the QMC estimator, does not
approach zero error. We believe that limitations of the quench protocol lead to distortions
that are worst for small systems. Characterizing and quantifying this distortion is the sub-
ject of ongoing research.
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