

Data.ON 🔆

Community Detection in Electrical Grids Using Quantum Annealing

E.ON : Optimizing the Renewable Electric Grid

Marina Fernández Fernández-Campoamor, Corey O'Meara, Giorgio Cortiana, Vedran Peric, Juan Bernabe-Moreno

https://arxiv.org/abs/2112.08300

> 800.000 connected assets > 350 heating networks

Decarbonization

Decentralization

Digitalization

increasingly complex and interlinked, requiring higher levels of coordination

Smart, decentralized and flexible grids

Congestion management

When is the energy fed into the grid going to be de-stabilizing it?

Optimization and energy storage

What is the optimal charging schedule for a fleet of e-vehicles?

How can e-Mobility be exploited to improve building energy efficiency and gridstability?

Local Energy Systems

How can we enable a Peer-to-Peer energy trading market?

Can a local energy system work completely off-grid?

Optimization: Community Detection in Electrical Grids/Peer-to-Peer

Optimization: Vehicle-to-Grid Optimizing Bi-Directional Assets

QML¹: Power Plant Anomaly Detection via Hybrid Neural Networks

QML: Clustering-based Anomaly Detection for Grid Assets

QML/QAE²: Optimized qGAN3 for power plant option pricing

¹ Quantum Machine Learning; ² Quantum Amplitude Estimation; ³ Quantum Generative Adversarial Networks

Optimization: Community Detection in Electrical Grids/Peer-to-Peer

Optimization: Vehicle-to-Grid Optimizing Bi-Directional Assets

QML¹: Power Plant Anomaly Detection via Hybrid Neural Networks

QML: Clustering-based Anomaly Detection for Grid Assets

QML/QAE²: Optimized qGAN3 for power plant option pricing

Flexibility services

Optimization: Community Detection in Electrical Grids/Peer-to-Peer

Optimization: Vehicle-to-Grid Optimizing Bi-Directional Assets

QML¹: Power Plant Anomaly Detection via Hybrid Neural Networks

QML: Clustering-based Anomaly Detection for Grid Assets

QML/QAE²: Optimized qGAN3 for power plant option pricing

Flexibility services

Smart asset and predictive maintenance

¹ Quantum Machine Learning; ² Quantum Amplitude Estimation; ³ Quantum Generative Adversarial Networks

Optimization: Community Detection in Electrical Grids/Peer-to-Peer

Optimization: Vehicle-to-Grid Optimizing Bi-Directional Assets

QML¹: Power Plant Anomaly Detection via Hybrid Neural Networks

QML: Clustering-based Anomaly Detection for Grid Assets

QML/QAE²: Optimized qGAN3 for power plant option pricing

¹ Quantum Machine Learning; ² Quantum Amplitude Estimation; ³ Quantum Generative Adversarial Networks

Flexibility services

Smart asset and predictive maintenance

Risk and portfolio management

Optimization: Community Detection in Electrical Grids/Peer-to-Peer

Optimization: Vehicle-to-Grid Optimizing Bi-Directional Assets

QML¹: Power Plant Anomaly Detection via Hybrid Neural Networks

QML: Clustering-based Anomaly Detection for Grid Assets

QML/QAE²: Optimized qGAN3 for power plant option pricing

¹ Quantum Machine Learning; ² Quantum Amplitude Estimation; ³ Quantum Generative Adversarial Networks

Quantum @E.ON

Future of the Energy Sector

eon

The future grid is complex, decentralized and bidirectional

How can we optimally detect communities taking into account technical characteristics of the electrical grid?

e.nn

使 「 Reduce power and power transactions

Modularity (complex network theory)

"Fraction of the edges that fall **within the given group** minus the expected fraction if edges were distributed at random."

Modularity (complex network theory)

"Fraction of the edges that fall **within the given group** minus the expected fraction if edges were distributed at random."

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

Q = modularity m = total number of edges in a graph $A_{vw} = \text{coeff. for the } v, w \text{ th elem. of the adjacency matrix}$ $k_v = \text{the degree of bus } v$ $\delta(C_v, C_w) = 1 \text{ if } v \text{ and } w \text{ are in same partition, 0 otherwise}$

Modularity (complex network theory)

"Fraction of the edges that fall **within the given group** minus the expected fraction if edges were distributed at random."

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

Q = modularity m = total number of edges in a graph $A_{vw} = \text{coeff. for the } v, w \text{ th elem. of the adjacency matrix}$ $k_v = \text{the degree of bus } v$ $\delta(C_v, C_w) = 1 \text{ if } v \text{ and } w \text{ are in same partition, 0 otherwise}$

Modularity (complex network theory)

"Fraction of the edges that fall **within the given group** minus the expected fraction if edges were distributed at random."

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

Q = modularity m = total number of edges in a graph $A_{vw} = \text{coeff. for the } v, w \text{ th elem. of the adjacency matrix}$ $k_v = \text{the degree of bus } v$ $\delta(C_v, C_w) = 1 \text{ if } v \text{ and } w \text{ are in same partition, 0 otherwise}$

e.nn

Community Detection in Grids

Electrical Modularity

Modularity applied to a graph in which edges are given a weight based on two electrical measures:

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

e.nn

Community Detection in Grids

Electrical Modularity

Modularity applied to a graph in which edges are given a weight based on two electrical measures:

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

Electrical Modularity

Modularity applied to a graph in which edges are given a weight based on two electrical measures:

$$Q = rac{1}{(2m)} \sum_{vw} \left[A_{vw} - rac{k_v k_w}{(2m)}
ight] \delta(c_v,c_w)$$

Composite weight

- Line resistance
- Sensitivity of the line

O.nn

Electrical Modularity

Modularity applied to a graph in which edges are given a weight based on two electrical measures:

$$Q = \frac{1}{(2m)} \sum_{vw} \left[A_{vw} - \frac{k_v k_w}{(2m)} \right] \delta(c_v, c_w) \qquad \qquad \bullet \quad \text{Line}$$

Composite weight

- Line resistance
- Sensitivity of the line

O.nr

How can we partition an electrical grid maximizing electrical modularity?

Data preparation

eon

Elements	IEEE-14	IEEE-33	IEEE-118
Buses	14	33	118
Lines	15	37	173
Loads	11	32	99
Generators	4	0	53
Grid ext.	1	1	1
Trafos	6	0	13

eon

Workflow

Creates problem

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w)$$

Binary Integer Programming (BIP) Problem

 x_{ik} Binary, 1 if bus *i* belongs to group k

Creates problem

$$Q=rac{1}{(2m)}\sum_{vw}\left[A_{vw}-rac{k_vk_w}{(2m)}
ight]\delta(c_v,c_w) \; ,$$

BIP Problem

 x_{ik}

$${1\over (2m)}igg[A_{vw}-{k_vk_w\over (2m)}igg]$$

eon

eon

Workflow

Creates problem

BIP Problem

$$ext{max} \quad \sum_{k=1}^{K} x_k^T Q_e x_k$$
subject to $\quad \sum_{k=1}^{K} x_{ik} = 1 \qquad orall i \in B$

Creates problem

BIP Problem

QUBO Problem

eon

Quadratic Unconstrained Binary Optimization

$$\max \quad \sum_{k=1}^{K} x_k^T Q_e x_k$$
 subject to $\quad \sum_{k=1}^{K} x_{ik} = 1 \qquad \forall i \in B$

$$H = H_{obj} + \sum_{i}^{B} H_{c_i} \quad \text{where}$$

$$H_{obj} = -\sum x^T Q_e x$$
 and

$$H_{c_i} = \lambda (\sum_{k=1}^{K} x_{ik} - 1)^2 ,$$

Creates problem

BIP Problem

QUBO Problem

eon

Quadratic Unconstrained Binary Optimization

Creates problem

BIP Problem

QUBO Problem

eon

Quadratic Unconstrained Binary Optimization

eon

Workflow

Backends

Methods	IEEE-14	IEEE-33	IEEE-118	
DWaveSampler	\checkmark	-	-	
LeapHybridSampler	\checkmark	\checkmark	-	
LeapHybridDQMSampler	\checkmark	\checkmark	\checkmark	
Louvain	\checkmark	\checkmark	\checkmark	
Gurobi	\checkmark	\checkmark	\checkmark	

Results

	Number of communities k				
Method	1	2	3	4	5
DWaveSampler	0,000	0,3495	0,4646	0,4844	0,4393
LeapHybrid	0,000	0,3495	0,4613	0,4613	0,4613
LeapHybridDQM	0,000	0,3495	0,4613	0,4613	0,4613
Louvain	-	-	0,4613	-	-
Gurobi (MIP)	0,000	0,3495	0,4613	0,4613	0,4613

Table 1. Modularity results for several samples and several number of communities.

Fig. 1. Average run time performance in seconds for each partition and tested method in the IEEE 14-bus test case

Chain Length Warning

Chain length greater than 7

Results

3591, 3592, 3590, 1443, 1442, 1353, 3622, 3637

eon

Results

Fig. 2. Modularity versus number of partitions plots for each tested method in the IEEE 33-bus test case.

Results

Fig. 4. Average run time performance for each partition and tested method in IEEE 33-bus test case.

eon

Results

Method	Modularity	Running time (s)
LeapHybridDQMSampler	0,7444	6,2
Gurobi	0,7448	3600 (*)

Table 2. Modularity and run time for IEEE 118 bus partitioned into 9 communities.

Fig. 5. Partition of network IEEE 118-bus test case

Conclusions

- Quadratic objective functions create a perfect candidate to use quantum annealing.
- Hybrid samplers bridge the gap between current quantum hardware and scalable applications.
- Modularity optimization can be applied to electrical grids and serves as a flexible tool to account for other information.
- Partnership with D-Wave has proven invaluable in the development of the project.

Ongoing work

Further analysis on relevant applications in the E.ON context

Cloud architecture deployment for q-software in production

Further exploration of hybrid architectures for performance improvement

Hyperparameter tuning

Quantum @E.ON

eon

Quantum Computing @E.ON

Dr. Corey O'Meara Quantum Lead

Dr. Kumar Ghosh Quantum Engineer

Dr. Giorgio Cortiana Head of Energy Intelligence (interm) Head of Data Incubation

Marina Fernández Fernández-Campoamor Quantum Incubation Specialist

Dr. Juan Bernabé Moreno CDO E.ON Digital Technology GmbH

Arthur Kosmala Data.ON/TUM

Data.ON 🔅

Community Detection in Electrical Grids Using Quantum Annealing

E.ON : Optimizing the Renewable Electric Grid

Marina Fernández Fernández-Campoamor, Corey O'Meara, Giorgio Cortiana, Vedran Peric, Juan Bernabe-Moreno

https://arxiv.org/abs/2112.08300