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Abstract

In this paper we investigate the use of hardware which physically realizes quantum
annealing for machine learning applications. We show how to take advantage of the hard-
ware in both zero- and finite-temperature modes of operation. At zero temperature the
hardware is used as a heuristic minimizer of Ising energy functions, and at finite tempera-
ture the hardware allows for sampling from the corresponding Boltzmann distribution. We
rely on quantum mechanical processes to perform both these tasks more efficiently than is
possible through software simulation on classical computers. We show how Ising energy
functions can be sculpted to solve a range of supervised learning problems. Finally, we val-
idate the use of the hardware by constructing learning algorithms trained using quantum
annealing on several synthetic and real data sets. We demonstrate that this novel approach
to learning using quantum mechanical hardware can provide significant performance gains
for a number of structured supervised learning problems.

1 Background

Not all computational problems are created equal. Some problems are so simple that even large
instances may be solved rapidly. Other problems are intractable - once the problem is large
enough there is essentially no hope of solving it exactly. Computer scientists have formalized
this observation, and divided problems into complexity classes of varying difficulty. To enable
this classification, both the kinds of problems we are interested in solving and the tools used
to attack these problems must be defined. We consider two kinds of problems: decision prob-
lems having a yes or no answer, and optimization problems which seek to minimize a cost or
energy measure. For both kinds of problems we consider their solution with either classical or
quantum resources.

Consider the familiar Sudoku puzzle from the daily newspaper. The goal is to assign num-
bers 1 to 9 to the empty cells of a partially filled 9 x 9 grid such that a variety of constraints
are satisfied (the numbers in each row, column, and in each of nine 3 x 3 sub-squares must be
distinct). The decision or yes/no version of this problem asks whether there is an assignment
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of numbers to cells satisfying all the constraints. Intuitively, answering this yes/no question
is no easier than solving the Sudoku in the sense that a yes answer likely requires exhibiting
a solution to the puzzle. Many constraint satisfaction problems like Sudoku share the feature
that a candidate solution to the yes/no question can be checked rapidly, but the finding of the
solution which generates a yes response can be exceedingly difficult. For Sudoku this means
verifying that in the solution all rows, columns, and subsquares consist of distinct numbers.
The solution acts as witness to the fact that a given Sudoku is solvable. For these kinds of prob-
lems it is the finding of a witness, and not the checking that makes the problem hard. This class
of problems where we can verify a yes answer quickly are called NP.!

The difficulty of a problem also depends upon the tools that can be brought to bear to
attack it. Rather than dealing with every possible kind of computer that might be used to solve a
problem, computer scientists have abstracted the essence of the computers that sit on our desks,
and in our phones. Classes of difficulty are defined relative to this abstracted essence so that if a
problem is hard for your cell phone, then it is hard for your desktop. This clever avoidance of
the details is accomplished by considering how the difficulty of the yes/no question changes as
the size of the problem is increased (imagine solving Sudoku on an 7 x 7 grid rather than just a
9% 9 grid). The class of polynomial problems, called P, requires a solution time which increases
as a polynomial of the problem size 7, e.g. n°. In contrast, other problems get harder much
more quickly, and require exponentially more time as 7 grows, e.g. exp(n). As the problem gets
larger the effort to solve an exponential problem dwarfs the effort needed to solve a polynomial
problem.

In 1971 Stephen Cook [ ], and Leonid Levin [ ] independently showed that
there is a class of NP problems having a simplifying feature. If we can solve any problem in
this class then we can solve all problems in NP with only a little extra work. This subclass of
NP problems is called NP-complete. NP-complete problems are the hardest in NP - if you
can solve an NP-complete problem, then you can solve any problem in NP. The amount of
extra work is polynomial so that if any one of the problems in NP-complete is in P, then all the
problems in the NP class are in P. It is natural then to ask how hard NP-complete problems are.
The overwhelmingly dominant position amongst computer scientists is that the NP complete
problems are dramatically harder than the P class problems, though no proof of this conjecture
has yet been found.

In this work we are concerned with combinatorial optimization problems which are more
general than decision problems. However, optimization and decision problems are closely
related. Given a finite set of objects and a measure which assigns a cost to each object in the
set, a combinatorial optimization problem seeks the element of the set having minimal cost
or energy. For example, Sudoku can be cast as an optimization problem. The objects in the
set of possibilities represent the possible assignments of numbers to empty cells. The cost
of any such object might be the number of constraints that the assignment violates. With
these definitions a Sudoku is solved by finding a zero cost assignment so that no constraints
are violated. Other optimization problems are more complex, and are not simply recastings
of constraint satisfaction. As an example the famous traveling salesman problem asks for an
ordering of cities to visit such that the total distance traveled is minimized.

'NP stands for non-deterministic polynomial. Similarly to the class NP, co-NP problems are the decision
problems where the no answer can be checked quickly.



An optimization problem can be converted into a decision problem by asking if there is an
object from the set having cost less than some value. By answering a sequence of these decision
problems the minimal cost solution to the optimization problem may be obtained (albeit the
number of queries needed may not be polynomial). If the decision versions of the optimization
problem are NP-complete, then we say that the optimization problem is NP-hard.

1.1 Boolean satisfiability

The first problem identified by Stephen Cook in 1971 [ ] to be NP-complete was Boolean
satisfiability; SAT for short. The input to a satisfiability problem is a Boolean formula involving
logical variables {y,,...,7,} each taking the value true or false, and connected by the propo-
sitional operators — (negation), A (and), and V (or). A formula is satisfiable if the variables
can be assigned values for which the formula evaluates to true. For example, =y, V (v, A =y;)
is a formula which evaluates to a truth value for each of the 8 possible joint assignments for
Y192, Y5- This formula is satisfiable by y, = false (with y,,7, taking arbitrary values), and by
y, = true and y; = false (with y, taking either value). For all other combinations of y,,7,,7;
the value of the formula is false. In contrast, the formula y, A =y, is clearly not satisfiable.
Boolean satisfiability asks the yes/no question: is a given formula satisfiable? In simple terms,
Boolean satisfiability is NP-complete because for some formulae involving 7 variables there is
no known method which is significantly better than enumerating all 2” combinations of inputs
looking for a witness or showing that one does not exist.

The practitioner interested in solving decision or optimization problems must be aware of
a significant limitation in the theory of computational complexity. As hinted above, the theory
says only that there are SAT problems which are difficult to solve. However, the theory is silent
on whether a typical SAT problem is hard or not. In fact, many industrially relevant SAT
problems with millions of variables are routinely solved with modern DPLL (see [ )
clause-learning SAT solvers. The restriction to worst case complexity is done for good reason.
Average case complexity requires the specification of what ‘typical’ means (often a challenging
problem in itself), and average case analysis is technically more demanding than worst case
analysis.

If restrictions are placed on the types of Boolean formulae under consideration then the
resultant problems may simplify. For example, k-SAT restricts attention to formulae of the
form

C,ACA---ACy,

where each clause C | is the logical or of k variables or their negations, e.g. C_ =y, Vy,V—y,;.
k-SAT is NP-complete for £ > 3, but is polynomial solvable for & < 2. There are optimiza-
tion variants of satisfiability as well. Given a set of clauses on k literals (variables or their
negations) MAX-k-SAT asks for a variable assignment with the maximal number of satisfied
clauses. Weighted MAX-k-SAT allows for positive weights associated with each clause and
asks for the assignment maximizing the total weight of all satisfied clauses. Weighted and un-
weighted MAX-£-SAT is NP-hard even for £ =2 (more on this later).

Since Cook and Levin’s pioneering work, a great many other problems have been shown to
be NP-complete. A problem other than SAT, call it problem A, is shown to be in NP-complete
by reducing Boolean satisfiability to A. Reducing Boolean satisfiability to A means providing



a polynomial time algorithm for solving Boolean satisfiability assuming that we can solve A.
The solution of A is used as a subroutine we can call polynomially many times to solve Boolean
satishability. If A is easy (can be solved in polynomial time) then Boolean satisfiability is easy.
Since we know Boolean satisfiability is hard and we can construct a reduction, then A itself
must also be hard. Using this technique Richard Karp [ ] showed in 1972 that a great
many problems are NP-complete.

2 Thermodynamics and NP-hardness

Modern physics contains at its core the assumption that there are simple, knowable rules that
govern the behavior of the world around us. There are many of these, some believed to be
more fundamental than others. Many physicists believe that the laws of thermodynamics, and
in particular the second law of thermodynamics, are more likely to remain true as we discover
more and more about our universe than any other set of laws. Quantum mechanics or general
relativity could be shown to be facets of some grander underlying theory, but thermodynamics
will likely remain as the bedrock upon which all other physical theories must sit.

The second law of thermodynamics has many formulations. One way to think about the
law is that when you put two different physical systems in contact, they will attempt to ther-
mally equilibrate with each other - heat flows from the hotter system to the colder one, until
the whole system reaches some equilibrium temperature in the middle. This simple common
sense observation has very deep roots. If it were to fail, much of our understanding of how the
universe works would be shown to be false. As just one example, perpetual motion machines
would become feasible.

2.1 The Ising model

There are an enormous number of physical systems we might want to model, from individual
electrons to collisions of galaxies. The most useful models of nature are those that can be used
to represent a large number of completely different systems. Understanding how such models
work then leads to understanding all of the physical systems the model can be used to represent.

One of the most widely used models in physics is called the Ising model. It was initially
proposed in the mid 1920s by Ernst Ising and Wilhelm Lenz as a way to understand how mag-
netic materials work. The approach modeled a magnetic material as a collection of molecules,
each of which has a spin which can align or anti-align with an applied magnetic field, and which

interact through a pairwise term with each other | ]. Let s, € {—1,+1} represent the spin
of the ith molecule, V' represent the set of all molecules, and |V/| represent the number of
molecules. The energy of a collection of spins s =[5, ,5,y] is
Z ]z]SzS]+thsz— S]S ( ) (1)
(i,7)€neigh eV

where 5, is the strength of the applied field at molecule 7 and J; ; acts as interaction field between
neighbouring spins z and j. b = [h;,--+, k] is the |V]-vector of magnetic fields, and the
|V|x|V|matrix] has i, element J; ;. At low temperatures where the system is strongly biased



towards low energy states, a positive J; ; favors anti-aligned neighbouring spins (s;s; = —1) since
the product J; ;5;5; will be negative. If J; ; is negative the opposite occurs, s; and s; tend to
align (s;s; = 1) so that J; ;s;s; is again negative. Though Ising did not realize it at the time this
simple model provides excellent experimental agreement with the properties of many magnetic
materials.

Over time it was realized that Eq. (1) could be used to model many different physical
systems. Any system that describes a set of individual elements (modeled by the spins s;) inter-
acting via pairwise interactions (the quadratic terms s;s;) can be described in this framework.
In the period 1969 to 1997, more than 12,000 papers were published using the Ising model to
describe systems in fields ranging from artificial intelligence to zoology.

2.1.1 Thermodynamics of the Ising model

Even in 1920, it was well-known that if a system described by Eq. (1) was in thermal equi-
librium at temperature 7' (using units where i = k; = 1), the probability of observing any
particular configuration s follows a Boltzmann distribution, i.e., the probability of s is pro-
portional to exp(—E(s)/T) where T is the temperature of the system. At high temperatures
almost all configurations have the same probability as 7' > E(s) for all s. However, at low
temperatures the s having the lowest energy becomes the most likely state. At exactly 7= 0
only the state(s) s having the lowest energy will be observed.

This thermal equilibration process is driven by the second law of thermodynamics. Any
system that can be described as an Ising model of the form Eq. (1), if placed in contact with any
other system in thermal equilibrium, will attempt to thermalize with this other system. If this
thermalization can be achieved, the most likely state of the system in Eq. (1) will be its ground
state.

This leads to a fascinating conundrum, because finding the global ground state of the Ising
model is NP-hard. This fact was established in 1982 by Francisco Baharona [ ] by con-
structing Ising equivalents of the logical operators =, A, and V of SAT. Treating s; = —1 as false
and s; = +1 as true the truth tables for the logical operators can be encoded as minima in an
Ising energy function. The Ising equivalents for z = =y, z =y, Vy, and z =y, Ay, are given
in Figure 1. From these basic elements an arbitrary SAT formula may be encoded as an Ising
model so that the SAT formula is satisfiable if and only if the lowest energy state of the Ising
model is 0.

Therefore it seems as though nature, via its fundamental statistically-driven tendency to
thermalize all systems to the same temperature, is applying an enormous amount of computing
power attempting to solve a large number of NP-hard problems. Thermalizing any of the
physical systems to which Eq. (1) has been applied requires ‘solving’ an NP-hard problem, in
the sense that if equilibration can occur the most likely state of the system is its ground state,
which encodes the solution to an NP-hard optimization problem.

This is a peculiar observation - that perhaps the most fundamental aspect of our universe,
embodied in the second law of thermodynamics, can be largely frustrated by the fact that its
desired outcome - thermalizing physical systems - may be computationally intractable for a
large number of systems.

Exploring these ideas is beyond the scope of this paper. For our purposes, we will simply use



Logical operator Ising penalty
z=- L+s,s,
z=y, Ny, 3—(s,, +s,)+2s,+s,5, —2s, +5,)s,
Z:ylvyz 3+5}’1+SJ’2_252+SJ’153’2_2(SJ’1+SJ’2)52

Table 1: Ising penalty functions representing the logical =, A, and V operators. The penalty
functions have minimal energy equal to zero at configurations satisfying the constraint im-
posed by the corresponding logical operator. Thus, energy minimization realizes the logical
operations.

the observations that physical systems described by Eq. (1) exist, and are driven by fundamental
statistical physical laws to thermally equilibrate with their environments. If the system can
thermalize, the ground state of the physical system will be the most likely state. This fact can
be used to construct novel algorithms for attacking optimization problems.

2.2 Equivalence of the Ising and weighted Max-2-SAT models

The proof of NP hardness of the Ising model can also be used to show that weighted Max-2-SAT
and the Ising model are two guises of the same problem.

Rather than converting weighted Max-2-SAT to the Ising model, we convert it to a quadratic
unconstrained binary optimization problem (QUBO) defined over Boolean variables.” QU-
BOs are Ising models where the spin variables s; € {—1,41} are transformed to binary-valued
variables y. € {0,1}. This transformation is easily realized through s, =2y, — 1. If the QUBO
objective is writtenas E(y) =2, %;Q; ;y; (the QUBO terms linear in y arise from the diagonal

elements y;Q; ;y; as y? =y, for binary valued variables) then

Ep)=(»Qy)=(5,Qy)+(@.y) =y +(s.Js)+ (h,s)

where y = (1,Q1)/4+ (1,4)/2, ] = triu(Q + Q")/4, and b = §/2+ (Q+Q',1)/4. In this
expression § is the vector of diagonal elements of Q, Q is the matrix of off-diagonal elements
of Q (the diagonal elements are zeroed), for a square matrix A the operation triu(A) zeroes the
lower triangular part of A, and 1 is the vector all of whose components are 1. Thus, up to an
irrelevant constant there is a simple relationship between the b,J of an Ising model and the Q
of a QUBO. In the rest of this paper we will freely use both the QUBO and Ising forms as
different representations of the same underlying problem.

Weighted Max-2-SAT to QUBO: Weighted Max-2-SAT seeks to maximize the weight of
satisfied clauses, or equivalently to minimize the weight of unsatisfied clauses. A weighted
Max-2-SAT problem is converted to a QUBO by translating each weighted clause into a corre-
sponding QUBO energy contribution. By adding the contributions of each clause we derive
a QUBO whose energy function E(y) gives the total weight of violated clauses. Consider a

2QUBOs are a special case of pseudo-Boolean optimization discussed at length in [ ]



weighted clause C,, with weight w,, >0 givenby [, V[, ,wherel,  and [, ,areliterals (vari-
ables or their negation). We represent C, as (,,,,1, ,;w,,). C,, is unsatisfied if =/, | A=l ,
where negation is realized as =/ = 1 — [ for binary valued literals. We use / as shorthand for

—[. The cost of this violation is w,, so that the energy penalty due to C,, can be written as

w,,l 1, 5. Thereare 3 possibilities to consider for the signs of the literals in the clause:

1. no negative literals: V13V 2s @) = @, (1=, N1 =7,,,)
2. one negative literal: (ym,l,ym’z; @,,) = W, (1=, 1)V
3. two negative literals: (ym,l,ym,z; w,,) — WY1V m.2
For length 1 clauses we have
1. no negative literals (y,, ;;w,,) = ©,,(1-7,,,)

2. one negative literal: (y_;w,,) — w,,7,,

We apply this conversion to all weighted clauses in the weighted Max-2-SAT instance and add
the resultant contributions to obtain the QUBO representation.

QUBO to weighted Max-2-SAT: In this case we translate each QUBO contribution into
a weighted clause. Adding QUBO contributions simply adds weighted clauses. First consider
the bilinear term Q; ;y;7;. There are two cases to consider according to the sign of the quadratic
terms:

L Qi >0:Q 7y —:,7;Q,)
2. Qi <0:—|Q, i|y;y; — {(yia7j§|Qi,j|)’(yj5 |Q;;|)} —Q;;l

The negative Q, ; adds two clauses, one involving two variables and the other involving a single
variable. Similarly, for the linear terms

L Q;;>0:Q;,7—0;Q;,)
2..Q;; <0 —[Q; |y = (9:51Q; ;1) —1Q; 1

Note that the conversion of negative QUBO terms to clausal form requires the energy to be
shifted downward since all clausal contributions are positive. We add the weighted clause for all
linear and quadratic terms in the QUBO. Some of the clauses resulting from this process may
be combined and simplified. For example clauses (/,,;w,) and (/,,/,;w,) can be combined
into (1, ,; w, + w,). As an example

Ising: —5; 25,5, — 35,5,
QUBO: =6y, +2y,+6y;+8y,y, = 12y,;
Weighted MAX-2-SAT: —-12+ {(J’ﬁ 6),(52:2),(9356), 1 V¥558), (92 V 55 12)}

all represent the same problem. Note that the Weighted Max-2-SAT representation is not
unique.



3 Quantum optimization

As discussed in the introduction, the difficulty of a problem depends on the tools used to solve
it. Quantum mechanics provides a superset of the classical resources used by existing comput-
ers, and thus offers the possibility to solve certain problems faster. The complete quantum
mechanical description of a set of 7 quantum bits (qubits) requires the specification of 2” com-
plex numbers. These 2” amplitudes are operated upon by Nature in parallel. As early as 1982
it was suggested that this parallelism might be exploited to speed computation [ , ].
A number of quantum algorithms are now known that are more efficient than the best known
(and in some cases the best possible) classical algorithms. Arguably the best known quan-

tum algorithm is Shor’s Algorithm [ ], which factors products of prime numbers in time
growing polynomially in the size of the integer to be factored.
Here we consider the specialization of a general model for quantum computation [ ]

to the solution of discrete optimization problems. This specialization, called guantum anneal-
ing, is conceptually analogous to the well-known simulated annealing heuristic used for mini-
mization in discrete optimization.

From one perspective the hardness of optimization arises from deception. Consider a search
space Y and a function E(y) to be minimized that associates a cost or energy with eachy in Y.
For large optimization problems one of the most effective solution strategies is to improve upon
an initial guess y, by search locally amongst neighbouring configurations similar to y,. Thus,
the next solution y, ,, is obtained by finding the best solution within the local neighborhood of
% ,; this smaller optimization can be usually carried out exactly. y,,, then serves as the starting
point for a new local search in the neighborhood centered at y, ;. This process stagnates at a
local minimum where the final configuration has lower energy than all of its neighbours. For
hard problems the greedy exploitation of local improvement may deceive the algorithm and
lead it into a local minima whose energy may be much higher than the globally minimum value.
For effective search, local exploitation must be tempered with global exploration. Sometimes
things have to get worse before they can get better.

Simulated annealing: Simulated annealing (SA), proposed in [ ] and inspired by a
physical process, is an attempt to balance exploration with exploitation. SA searches for the
global minimizer y* in an indirect and stochastic way. One view of this process simplifies the
picture by removing the stochastic elements of the algorithm. Rather than seeking the global
minimizer y* directly we seek a probability distribution p over the search space. p(y) defines
the probability associated with element y in the search space. The highest probability p should
be associated with y*. p is determined by minimizing a function balancing explorative and
exploitative terms. Physicists call this function free energy F(p), and it is given by

F(p)=E,(E)=TS(p)-
E,(E)=2., p(y)E(y) is the expected energy under the distribution p and is minimized by the
probability distribution’
1 ify=y"
PO)= { o

0 forallothery

3 Assuming the globally minimal state is unique.



The term S(p) = =23, p(y)In p(y) is the entropy; the negative entropy is minimized when
equal probability is assigned to all y. The inclusion of this term favors exploration of the entire
search space. T (for temperature) is a parameter controlling the relative importance of these
two terms. Simulated annealing begins at large 7" which favors widespread exploration of the
search space. As the algorithm progresses T is decreased to narrow the focus down to promising
regions where E (E) is low. Eventually, T is driven to zero so that the global minimum can be
obtained.

Forany T the free energy is convex (bowl shaped) as a function of p so that gradient descent
on p is guaranteed to locate the globally minimal p*. In fact, the optimal p* at T' can be written
down immediately as the Boltzmann distribution p;(y) = exp(—E(y)/T). This observation is
not directly helpful because exponentially many numbers are required to specify p; (we need
specify the probability of every y). As a result, approximations to p, need to be used. Most
commonly, a collection of samples drawn approximately from p; are used to estimate p;. It
is at this point the stochastic nature of SA returns. Markov chain Monte Carlo MCMC) is
a method that allows for samples to be drawn from a probability distribution. It bears much
in common with local search methods for optimization. A proposal distribution v,(y[y’) is
defined which for each y’ defines a probability over all possible next states y. Typically, v,(y|y’)
is non-zero only for y in the neighborhood of y’. An initial distribution 7(y) is evolved by v,
into 7,(y) = 25, v7(¥[y)7o(»"). MCMC equilibrates (reaches a fixed point) at a distribution
7 (y) satistying

70 )orOly) = 7 0)or (' ly)
where the flow of probability out of y” into y is the same as the reverse flow. For SA, v,(y |y )
is chosen so that the equilibrium distribution is 7w = p,. The rate of convergence to 7__ is
governed by the gap between the largest and second | largest eigenvalues of v(y|y”). The smaller
the gap the slower the convergence.

The hardness of a problem for SA manifests itself in the sampling problem. The local nature
of the MCMC proposal distribution can make large scale changes in y (i.e. far ranging explo-
ration) difficult. This is why the solution p;+ at a slightly higher temperature 7% > T is used
to bootstrap the sampling at p. In hard problems there is typically a particular 7" where sam-
pling becomes particularly difficult as the character of p; can change dramatically over a small
range of 7. This abrupt change in the character of p; is called a phase transition. The transi-
tion in the Ising model from a non-magnetic to a magnetic state at a particular temperature 7
(the Curie temperature for ferromagnets, and the Neel temperature for antiferromagnets) is an
example of a phase transition.

Quantum annealing: From a computational point of view there is nothing special about
using entropy as the objective to force exploration. Any function that smoothes the probability
over the search space can serve the same purpose. In quantum annealing quantum processes are
used to encourage exploration.

For concreteness, suppose that we are trying to solve problem P,* represented asa QUBO or
its equivalent Ising model on 7 bits. Classical mechanics is generalized to quantum mechanics

*Here P refers to a specific problem instance and not the complexity class P.



by generalizing bits to qubits, classical states of 2” binary configurations to quantum states, and
the energy function E to a Hermitian operator H.

The 27 classical states y form an orthonormal basis of a 2”-dimensional vector space ¥ and
are denoted by |y) in standard notation. When 7 = 1, the vector space ¥ has dimension 2, and
we can assume that the two classical states, 0 and 1, map to the canonical vectors |[0) = [1 0]T
and |[1) = [0 1]T. When 7 = 2, the 4 classical states map to the 4 canonical vectors in ¥ written
as |00) =10)®]0), |01) =]0)®]|1), |10) =|1)®|0), and |11) = |1) ®|1), that is, the tensor product
of the classical states of each of the 2 qubits. In general, the classical state y = b,...5 , where
b; is the ith bit of y, can be written as |y) = |,) ® |5,) ... ®|b,). A quantum state is simply a
normalized vector of ¥. Thus, an arbitrary quantum state ¢ in the basis of classical states can
be written as [¢) = 3. @, |y), where the 2” complex numbers @, give the amplitudes in each of
the 2” basis vectors |y), and satisfy 3 |o,[* = 1. (@] is the Hermitian conjugate.” Quantum
states cannot be measured directly, but when qubits are measured in state |¢) each classical
state |y) will be seen with probability |a,|*. For example, the single qubit state (|0) + 1))/ V2
is equally likely to be measured as either 0 or 1.

The operator H maps quantum states into quantum states, and for a system of n qubits
can be represented as a matrix of size 2” x 2”. The energy of quantum state |@) is (P|H|p).
Minimizing the energy ($|H|) is accomplished by finding the smallest eigenvalue of H, and
the corresponding normalized eigenvector(s). For our Ising problem P, each classical state y
has energy Ep(y). The operator H, representing this problem is diagonal in the {|y)} basis
and satisfies H,|y) = Ep(y)|y). Thus, the classical states that have smallest energy E,(y) are
also minimizers of (¢|Hp|d) over all quantum states |¢). Furthermore, the minimum value
of the energy (¢|Hp|¢p) is equal to the smallest eigenvalue of H), which in turn is equal to
min, E»(y). Even though the matrix representing the diagonal operator H), is exponentially
large, the operator H), can be easily configured in hardware, because it decomposes by qubits
(linear terms) and pairs of qubits (quadratic terms).

The goal of quantum annealing is to find a minimizer of H, through a physical quantum
evolution. This is accomplished in a similar way as SA. The process starts by considering a
second “energy”-like operator H, whose minimal energy state is the quantum state that has
equal squared amplitude for all bit configurations so that all classical states are equally likely
to be observed when measured. The operator Hy, is easily configurable in hardware because
it can be applied qubit by qubit (we make each qubit equally likely to be measured as 0 or 1).
Furthermore, the quantum system can easily attain this minimal energy state. Note that unlike
H,, Hy is not diagonal.

We can, then, define a quantum version of a free-energy-like objective

F (p)=tr(Hpp)+ ttr(Hyp)

where o = |¢)(¢| and tr(Hp) = (P|H|P). p is a 2" x 2" matrix, but acts like a probability in
that all its eigenvalues are positive and sum to 1. With this definition the parallels to SA are
direct. 7 is initialized at a very large value, and minimizing # with respect to p is the same as
minimizing Hy alone which makes all |y) equally likely to be observed. Similarly, when 7 =0

>If | ) is a column vector then (@] is the row vector of complex conjugated elements. Also, note that (¢|@) =

2 _
Zy |ay| =1
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minimization yields the solution to the optimization problem encoded by H,. However, just
as we faced a problem in SA due to the exponential size of p, here p is exponentially large. The
solution to this problem in the present context however is vastly more satisfying, and relies on
Nature to implicitly represent p.

The minimization of & (which amounts to diagonalizing H, + vH to find the lowest
eigenvector) is accomplished by Nature which natively operates on exponentially large quan-
tum states ¢. Thus, by setting initial conditions to define Z (o) and relying on physics we can
circumvent the problems associated with the exponential size of p. Given that Nature solves
our problem why do we need to bother with the H, contribution encouraging exploration?
The answer to this is that it may take an exponentially long time for the physical system to
relax to its lowest energy state. We recall that the Ising optimization problems facing Nature
are difficult, and even physical evolution can get stuck in local minima for long periods of time.
Fortunately, the adiabatic theorem [ ] can be applied to the system to speed the relaxation
to lowest energy states. In simple terms, if the system is initialized at a minimum energy state
at large initial 7, and the decrease of T over time is sufficiently slow, the system will remain at
minimum energy state throughout the evolution. In other words, by annealing = from large
values to zero we speed the relaxation to the globally lowest energy state of H,. The adiabatic
theorem relates the rate at which 7 can be decreased to the eigenvalues of H, + tH,. More
conventionally 7 is expressed as T = (1 — 5)/s so that the free-energy-like objective can be re-
stated as F (o) = tr((sHp + (1 — s)Hy )p) where s now increases from 0 to 1 during quantum
annealing.’

The parallelism inherent to quantum mechanical evolution can translate into significantly
improved optimization. The first quantitative result was derived for unstructured search [ ].
Consider a classical energy function E(s) = —1 for s =s*, and E(s) = 0 for all other configura-
tions. This problem is extremely difficult as the energy function provides no hints as to what
s* might be. For strings of length 7 the best classical search (sampling without replacement)
requires @(2") time to locate s*. Quantum mechanically this can be improved to €(2%/) using
a specially tuned interpolation g(s) from H, to Hp, 1.e. H =(1—g(s))Hy + g(s)H, [ ].
While unstructured search remains exponentially hard, the scaling exponent is halved. Care-
fully engineered optimization problems can be constructed for which quantum annealing is
exponentially faster than its classical counterpart SA [ ]. Other energy functions with
structure can also be constructed in which QA offers no speed-ups beyond the unstructured
search square root increase [ ]. In general, the efficacy of QA is governed by the minimum
gap min_E,(s)— Ey(s) where Ey(s) is the lowest energy eigenvalue of H(s) = (1 —s)Hy + s Hp,
and E,(s) is the second lowest eigenvalue. However, determining the minimum gap is as diffi-
cult as the original problem, and theory offers little practical guidance.

Exploration combining both thermal and quantum mechanisms is possible. In this case the
appropriate free energy function is

F(p)=tr(Hp)—TS(p) 2

where H = s Hp,+(1—s)H,, and (o) = —tr(po In p) is the generalized definition of entropy. The
limits 7' — 0 and s — 1 remove the explorative effects of the thermal and quantum annealing
processes respectively.

®The annealing parameters s should not be confused with s the vector of spin values.
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Figure 1: Experimentally measured envelope functions A(s) and B(s) for the 128-qubit proces-
sor used to perform the experiments reported on here.

3.1 Quantum annealing realized in hardware

We test the effectiveness of a physical realization of quantum annealing where we exploit the
parallelism inherent in quantum evolution. The hardware we use embodies a particular op-
erator for Hy, and allows for the expression of a class of Ising/ QUBO /weighted Max-2-SAT
problems for H,,. A detailed physical description of the underlying hardware components can
be found in [ , , ]. Due to the underlying physics the weighting of Hy
and H,, is not linear in s, but has the form A(s)H, + B(s)H,, where A(s) and B(s) are referred
to as envelope functions.” This still allows for controlled damping of the exploratory effects of
H,, through s. Figure 1 shows the functional form of these functions. The hardware however,
is less flexible regarding changes in temperature 7'. Though slight changes in T are possible, we
shall consider the temperature fixed at a low but non-zero value. Thus, runs of the hardware
will not deterministically return the global minimum of E,(y), but sample from a distribution
centered at low energy configurations.

The class of Ising problems realizable in the current hardware design is limited in the con-
nectivity allowed between variables. Due to the local nature of physical interactions, every
qubit is limited to interacting with a small subset of the other qubits. The hardware we use
has a connectivity that is driven by engineering feasibility. The connectivity is scalable to very
large qubit arrays, and the test problems solved here were solved on hardware consisting of 128
qubits. The connectivity of allowed interactions for the 128 qubit chip used in the experiments
reported here is shown in Figure 2(a). Not all qubits had equivalent functionality, and for the
experiments presented here we restricted ourselves to the subset of 52 qubits shown in Figure
2(b).

Arbitrary qubit connectivity can be simulated by constraining the values of certain neigh-
bouring qubits to be equal to effectively build paths between qubits that must interact. For
example, if we required ¢, to interact with g;; we can define a ¢,~¢ interaction which con-
strains the values taken by g, and g to satisty ¢, = gs. This constraint is easily realized as an

’Our convention will be that A(s) and B(s) will have units of energy, and Hy and H, will be dimensionless.
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Ising penalty —/q,g5 which contributes J if ¢, # g5 and —] if ¢, = ¢5. In low energy states g5
becomes a copy of ¢,, and now ¢ can interact with ¢, as if they are neighbors.

3.2 Experimental validation of optimization efficacy

As validation of hardware quantum annealing we generated a variety of Ising problems where
the parameters b and J are independently sampled from a zero mean Gaussian distribution.
We plot the energy relative to the exact global minimal energy (which can be obtained with
dynamic programming for these small lattices).

Figure 3 shows the time required to reach a certain level of optimization. For a given
optimization problem defined by b and J we find the global minimum E_. and global max-
imum E___. If the hardware returns a state having energy e we define optimality as a(e) =
(e—E_.)/(E. ..—E..) sothat @ =0 corresponds to the globally best energy and @ =1 corre-
sponds to the globally worst energy. A point (¢, ) of Figure 3 is the time (in seconds measured
on the left hand y-axis) taken by the hardware to find a state of optimality @. The bands of
color denote a decomposition of the total hardware time into its constituent components. Blue
shaded regions denote a fixed setup overhead required to program the hardware. After this
preprogramming time the problem is solved 2000 times. The gold region is the cumulative
annealing time taken to find the solution. The red readout time is the time taken to read out
qubits, and the brown thermalization time is the time taken for the hardware to cool after en-
ergy is dumped into the chip for programming and qubit readout. The results are the average
of 300 problems where the problems were defined so that there were either 3, 31 or 511 dis-
tinct 5 and J values uniformly spaced between -1 and +1. Each of the ; and J; ; parameters is
selected independently and uniformly from the set of allowed values. The red line near zero
is the fraction of times out of 300 where the given value was not attained in any of the 2000
samples.

For comparison, the vertical black line shows the performance of an algorithm yielding
the lowest energy from hill descents starting from 50 random starting configurations. This
particular chip is seen to be an effective and reasonably fast optimizer. The dominant error
mechanism is not the optimization itself, but rather the precision to which the problem can be
specified. An Ising parameter programmed to a particular h; or J; ; is experimentally realized
as a sample from a Gaussian centered on the desired value, but with a significant standard
deviation. Thus, problems with well-spaced /] values are more likely to be insensitive to small
parameter errors and thus more likely to be solved correctly in hardware. This is validated in
the experimental results. Problems with 3 distinct 5 /] values {—1,0,1} (Fig. 2(a)) are solved
to optimality much more rapidly than problems with 511 values {—1,—1+278,...,0,--- , 1 —

2781} (Fig. 2(c)).

4 Putting the Ising model to work

4.1 Structured learning

We have seen how Ising energy functions can be minimized by hardware-realized quantum
annealing. As hardware scales to larger qubit lattices this offers the promise of fast large-scale
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Figure 2: Edges between qubits ¢; and ¢, indicate an J; ;¢,q; of tunable strength J; .. Each qubit
yields a value of either -1 or +1 when measured. In addition to these quadratic interactions
all tunable linear terms 5,q; are also available. (a) Connectivity of the full 128 qubit chip. (b)
Connectivity between the 52 functioning qubits.
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optimization of Ising energy objectives, and opens the door to applications built upon this
capability. In this section we explore an application of Ising optimization to machine learning.

The NP-hardness proof for Ising optimization relies on the modeling of hard logical rela-
tionships between Boolean variables. Additionally, by varying clause weights (as in weighted
Max-2-SAT) we may also model softer relationships between variables. Thus, large scale Ising
models offer the potential to unify both symbolic logic-based and analogical connectionist ap-
proaches to artificial intelligence [ ]. As an illustrative example we consider the problem
of learning a mapping from arbitrary inputs x to a sequence of output bits y. The output y
may be a binary description of a complex object. For example, given a sentence x as input, y
might label the words in the sentence with their corresponding part of speech (e.g. noun, verb,
article, adjective, preposition, etc). Labels can be represented with a collection of binary-valued
variables {y; ,} defined so that

= {1 if the jth word has part of speech p
P

0 otherwise.

There are hard relationships that must be satisfied, e.g. every word must be labeled with a
single part of speech tag so that 3y, , =1 for all words j, or every sentence must contain a
verb 37 9; e, = 1. These logical relationships can be encoded as QUBO terms through the
use of penalty functions so that, for example, the constraint requiring that every word must be
labeled can be enforced by adding M (1 -3 2, p)z for each word j, where M is a large positive

weight that makes labelings violating the constraint costly.” However, some relationships are
not hard, and are best treated probabilistically. Since nouns are often preceded by adjectives it
might be useful to add a weighted clause of the form (¥ | ., V¥ _1 agiectives @) Which says that if
word ; is labeled as a noun then word j — 1 should be labeled as an adjective. However, this
is clearly not always true, but is an effective rule of thumb. Thus, the weight w assigned to
this clause should not be unduly high in order to allow for violations of this heuristic. This
approach to softening logic has been applied with much success recently in various learning
algorithms [ ], and is a natural fit to the Ising model.

The weight of the rule might be set once and for all, but more flexibility is provided by
letting the weight be determined by the input sentence x, i.e. w = w(x). Deferring for the
moment the precise manner by which the weights are determined how do we label a sentence?
It is natural to ask for the labeling that minimizes the weight charged by violating the rules of
thumb expressed in the weighted clauses. As we have seen, weighted Max-2-SAT is equivalent
to a QUBO so the labeling y of a sentence x can be determined as

y(x)= argminzyiQi,j(x)yj >
Y iy

where Q results from the translation to a QUBO and depends on w = w(x). Written this way
the parsing of a sentence is nothing but minimization of an appropriate Ising model!
How do we define the parameters of the Ising model so that Ising minimization yields good

labelings? This problem is solved by utilizing a set of training examples 2 = {x ;,y d}'g?:l - We

$Inequality constraints can be treated similarly with the introduction of slack variables.
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provide a learning algorithm with examples of sentences and their correct labelings (generated
by human grammarians). The clause weights buried in Q are defined so that the labels assigned
by Ising minimization agree with those assigned in the training set. Given a parametric depen-
dence of Q; ;, say Q; . = >, wi}. &, (x) where ¢,(x) are supplied (e.g., rules of thumb), then

the ‘wfj are set by requiring that the known labels y ; be obtained as the results of the QUBO

minimizations for each labeled sentence (x;,9,) € 2.

Our focus here is not on a particular learning problem (e.g. part of speech labehng) but
rather validating the fact that we can sculpt x-dependent Ising energy functions, and optimize
these energy functions using quantum annealing to solve learning problems. We consider two
types of learning algorithms, deterministic algorithms that output a single prediction y(x), and
probabilistic algorithms that output a distribution over possible outputs P(y|x). The determin-
istic algorithms effectively run at zero temperature (7' = 0), while the probabilistic algorithms
run at finite temperate (7 > 0).

4.1.1 Learning at zero temperature

We follow an approach proposed in [ ]. As discussed above, the mapping from x to y is
modeled as
y(x)=argmin&(x,y)  with  y €{0,1}
y

where &(x,y) = (y,Q(x)y) is an x-parameterized QUBO model. The minimization over y is
accomplished using hardware quantum annealing. In order to account for the finite tempera-
ture of the hardware multiple candidate minima are measured and the configuration having the
lowest energy is used. The order statistics of this process lowers the effective temperature to
near zero.

To determine how Q depends on x we write Q as a linear combination of user supplied
matrices (the rules of thumb expressed in matrix form)

=> ©,Q,(x)

50 that 6(x,3) = 6(x,9:0) = 5, ©,6,(x,9) = (w,8(x,)) with &,(x,) = (5,Q,(x)y) and &
being the vector whose components are &,. The functions &, (and thus Q,), called features in
the machine learning literature, are assumed to be known and provide predictive hints which
are boot-strapped into effective predictors through the identification of the optimal linear com-
bination.

The optimal weighting w of features is determined by minimizing an objective balancing
two contributions. One contribution R(w) seeks to minimize the errors on the training set,
and the second contribution Q(w) ameliorates problems of overfitting by favoring “simpler”
models. Consequently, we write the best w as

argmin{AQ(w) + R(w)}.
w
The A parameter balances the relative importance of the two contributions. Since we do not
know A it is customarily set by cross-validation. In cross-validation the training data & is par-

titioned into two disjoint sets. A model is learned from one partition of the data using a given
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A, and its accuracy is tested on the remaining partition. By averaging over many partitions we
can estimate how well the models generalize off the partition on which they were trained as
a function of A. We select the A having the smallest generalization error across a number of
randomly selected partitions.

The regularization term Q(w) favors simpler models having smaller @. Typically this is
measured using either 1- or 2-norms. In this work we most often use the 2-norm:

Yw) = (w,w)/2. ()

This regularization favors @ = 0 so that features not useful for prediction are zeroed out.
To define R(w), the training set error, we first quantify the cost of errors. Since y is a
bit-string it is often natural to use Hamming error. The Hamming error

A(y,y)= Z(J’i —3,) = Z (v +9: = 29,9:)

[ i

sums the number of bits which differ in bit-strings y and y. With this measure the average error
on the training set is

|@| > AWy y(xsw)) (4)

xd yd G@

where y(x ;;w) = argmin, (y,Q(x ;;w)y). This training set error, which measures the number

of bits differing in the predictions and training data, results in a difficult optimization problem
that may be discontinuous in @. Consequently, we instead measure training set error as

R(w)= Z maX{A)’dO’ +E(x .y 5w) — g(xd,y;w)} (5)
| |(xd3’d€9

where the optimization over y has been moved out from inside A.” R(w) upper bounds Eq.
(4), and has been found to work well in practice. R(w) is minimized when &(x,,y ;;w) is
at least A(y,;,y) lower in energy than the nearest alternative labeling y. Figure 4 illustrates the
improvement in the objective obtained by using R(w). This plot is obtained using training data
for a MAX-3-SAT problem described in Section 4.2.2 using w vectors obtained at iterations 10
and 50.

Combining Egs. (3) and (5) the learning of @ is done by minimizing

A

Flw)=-{w,w) + > man{A(ydsyH(w,é(xd,yd)—g"(xd,y))} ©)

(x4.y1)EP

By construction &(x;,y;w) is quadratic in y and A(y,,y) is linear so that the maximization
over y inside F(w) can be solved by quantum annealing of a QUBO (Ising) model. Addition-
ally, F(w) may be shown to be strictly convex so that it has a single minimum as a function of

? A better objective function which is invariant to changes in the scale of A is described in [ ], but this
results in problems which involve triplets of variables rather than pairs as required for the Ising model. While
triplet interactions may be simulated in an Ising model we do not pursue that extension here.
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Figure 4: The average Hamming loss (blue) and its upper bound R(w) (green) measured across
a set of w given by yw ,+ (1 — y)w,. Notice the different scales on the separate y axes for the
Hamming and upper bound values. The jumps in Hamming loss are discontinuities. Though
the upper bound is continuous, there are discontinuities in the derivative which are not observ-
able at this scale.

w. However, complicating matters is the fact that F(w) is not differentiable everywhere. Nev-

ertheless, optimization methods based on subgradients (generalized gradients that are defined

even at points of non-differentiability) can be successtully applied to the minimization of F(w).
Subgradient methods rely on subgradients &, F(w) which lower bound F and satisfy

F(®)>F(w)+ (I, F(w),® —w)  forall ®.
In the present case a subgradient at w is given by

a, F(w)=Aw + Z [é(xd,yd)—é(xd,y;(w))]

(x4y0)€7
where y7(w) = argmax {A(y,,y) + (w,8(x4,9,)— E(x4,))}. Thus, optimal learning of w

can be done by a subgradient method which relies on QUBO solving to generate subgradi-
ents. Having determined the optimal w* = argmin F(w), the mapping from x to QUBO

parameters Q is realized with the energy function &(x,y) = (w*, &(x,y)) which gives Q(x) =
Za w;Qa(x)'

In summary, Algorithm 1 describes the learning procedure used to identify a quadratic
function &(x,y;w"). The y predicted to be associated with a novel input x is argmax, &(x,y).

4.1.2 Learning at finite temperature

Algorithms for supervised
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Algorithm 1 Zero temperature learning using quantum annealing hardware

Require: training data 2, features {Q _(x)}

Initialize ¢t < 0,and w, <0

while w not converged do
Evaluate R(w,) by applying quantum annealing to maximize the QUBO A(y,,y) +
(wt,é(xd,yd) - é’(xd,y)) for each training data point (x;,y,) € Z; record each maxi-
mizer y’(w,).
Find a subgradient at w,: I, F(w,) « Aw, + 3, 1oy [&(x0,,4) — & (x47(w,))].
Update w, to w, , using any convex minimization algorithm relying on the history of
function values {F(w,), -, F(w,)} and subgradients {J, F(w,), -+ ,d,F(w,)} (we used
the level method described in [ 1)
t—t+1

end while

return the learned function &(x,y)=>__ w,(a)(y,Q(x)y).

learning at finite temperature are called conditional random fields in the machine learning
literature [ ]. Here we describe conditional random fields constructed from the Ising
model. To learn probabilistic mappings from x to bit-strings y we model the conditional prob-
ability as an exponential model:

1
(x, @)

where the normalization Z depends on x, w. Explicitly

Z(x,w) = exp(—&(x,y;w)).

P(ylx,w)= Z exp(—&(x,y;w))

Evaluating the normalization (partition function) is exponential in the length of the bit-string
¥y, and thus we require methods that work even when the partition function is approximated
using a polynomial amount of effort. We use the probabilistic nature of quantum annealing on
the Ising model to obtain good approximations with a small number of calls to the annealing
hardware.

The learning algorithm learns the x dependence of &(x,y;w) = (y,Q(x)y) by finding the
Q(x)=>, w,Q,(x) that gives the highest conditional likelihood of the observed training data
9. If the elements of the training set 2 are independent then the conditional likelihood of 2 is

CLw)= [] POlxs, )

(x4:04)E2

Rather than maximizing CL(w) directly, it is convenient (and equivalent) to minimize its neg-
ative logarithm, LCL(w) = — In CL(w) to determine w:

w* = argmin LCL(w) = argmin Z {&(xy5w)+InZ(x,,w)}. %)

Y (x490)ED
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This choice for @w* makes the observed training data most likely amongst all possible choices
of w. LCL(w) is a convex and differentiable function of @. The gradient of LCL(®) is

V,LCL(w Z {é’ X9 y) Zég’(xd,y)P(ﬂxd,‘w)}

(x4:4)E2

Z {g %4:4)—Ep Y|xdw<‘gb(xd’Y)>}

(x4:74)€E2

where Y is a random variable that takes values on the set of y’s with probability P(y|x,;, )
and E Pl ) denotes the expectation with respect to this probabh?y distribution. Evaluating
the gradient at any w exactly requires effort which is exponential in the length of y. We use
samples from the annealing hardware to rapidly obtain a Monte Carlo approximation of the
required expectations. Having obtained the noisy gradient estimates we use a simple gradient
descent algorithm with updates w, ., = w, — y,V,LCL(w,) where y, deteNrmines the step size
to improve w,. Assuming that .the Mont.e C.:arlo estimate of EP(Y|xd’w[)<£’ (x,,Y)) is not too
noisy so that the estimated gradient has significant alignment with the true gradient, then the

stochastic approximation convergence theorem [ ] guarantees that choosing y, = 1/t will
result in convergence to the global minimum w* of LCL(x).

Approximating expectations For long bit-strings y we approximate the expectation with
samples (indexed by k). If we could directly obtain samples y*) from P(y|x,;,w,) then we
could approximate the required expectation as

~ PINC) é(xd’y(k))
E E(x,Y)) ~ = . 8

However, due to the effects of quantum mechanics the annealing hardware does not return
samples from the Gibbs distribution exp(—(y,Qy))/Z(x,w) when fed input parameters Q.
Instead, there are two types of deviations. The first deviation is due to the effects of fixed
hardware temperature. Thus, instead of being at 7' =1 (as required by P(y|x;,w,)) there is an
unknown but fixed temperature 7;,. Due to this effect the distribution governing samples from
the annealing hardware is approximated as

PLOIQ) _exp(={y,Qy)/T;)
z ZQT)

where PO 01Q) = exp(—(y,Qy)/T,) is the unnormalized version of P2.(9|Q). Consider the

Monte Carlo approximation Eq. (8) we require. By using importance samphng we can write
this expectation as

PLOIQ)=

©)

. 30 {E)E(x ")
E E(x,,Y))~ , 10
Py (ExDHY)) & = 70%) (10)
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where y®) are samples obtained from the hardware having distribution PS. (71Q,(x,)) where
Q.(x;) =2, w,,Q,(x,), and where the importance weights ¢ are given by

ﬁ()"xd’wt)
f)eoff(let(xd)) ’

where P(y|x ;,w,) = exp(—(y,Q,(x,)y)) is the unnormalized form of the probability we need,

Cly)=

and Iseoff (¥1Q,(x,)) can be computed directly if 7; is known. T; can be set by maximizing the

likelihood of the observed samples {y*)} with respect to T,. The second type of deviation is
due to quantum mechanical details that result in an effective Q 4 differing slightly from the
input Q. We write Q 4 = Q + £. In principle £ is a deterministic function of Q dictated by
quantum physics, but in practice is unavailable from first principles, and has to be estimated.
Thus, samples returned from the annealing hardware tuned to Q are actually samples from an
effective distribution

P4(|Q) _ exp(—(y,(Q +2)y)/ Ty)

Py(|Q)= 7 Z(Q+2,T)

(11)

where P, is the unnormalized version of P;. Thus, a better approximation to the required
expectations is obtained with importance sampling as in Eq. (10) but with importance weights
given by

Plylxgw,)
Py(y1Q.(x,))

where again P(y|x,w,) is a known function, and if 7, and & are estimated from the samples
{y®)} then P 4(y) is also known and thus the importance weights {(y*)) can be easily evalu-
ated.'” £ is typically small so that P,g(y|Q,(x,)) is close to P(y|x,,w,) and the Monte Carlo
estimate is typically quite accurate even with only a small number of hardware samples y*).

In the experimental results section we will examine gradient descent algorithms using esti-
mates of the required expectations based upon both P4 and the simpler variant P,

()=

Regularization Just as regularization is needed in the zero temperature case, we also regular-
ize the finite temperature case. Regularization can be interpreted as a prior p(w) over beliefs
for w. The effects of the prior are accommodated by minimizing the posterior probability
P(w|?) x P(2|w)p(w) over weights w when conditioned on the training data 9. In this case
the optimization objective determining @* is given by

w" = argmin {LCL(w) — In p(w)} . (12)

Common choices for the (unnormalized) prior are the 1- and 2-norms p(w) = exp(—A||w||,)
and p(w) = exp(—A||w|[})."" In either case the objective in Eq. (12) remains convex, but the

197, and & are easily estimated by setting them to maximize the log likelihood of the observed samples {y*)}.
The resultant optimization is convex and easily solved.
"The A parameter is again determined by cross validation.
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I-norm introduces points of non-differentiability; fortunately though, the optimization for @*
can still be carried out efficiently.

In this case, the gradient descent step is replaced by the composite gradient mapping [ 15
defined by

1
w, , =argmin {LCL(wt)+ (V,LCL(w,),w —w,) + 2—||w —w,||*— lnp(w)} ,  (13)
Y

w

where y > 0 determines the step size. For the case of 1- and 2-norms solving (13) is straightfor-
ward because it decomposes by coordinates.

In summary, Algorithm 2 describes the learning procedure used to identify the conditional
distribution P(y|x) = exp(—&(x,y))/Z(x,w). The y predicted to be associated with a novel

Algorithm 2 Finite temperature learning using quantum annealing hardware

Require: training data 7, features {Q _(x)}
Initialize ¢t < 0,and w, <0
while w not converged do
For each training data point (x,, ;) € 7 estimate the expectation Epy), o, ) ((g” (x;,Y))
using importance sampling and samples obtained from the hardware; depending on the
model used for P(Y|x ;,w,) some parameters may need to be fit from the set of sampled
values.

Determine the gradient at w,: V_LCL(w,) = Z(xd’yd)e_@{é(xd,yd) -

EP(Y|xd,'wt) <g(xd: Y)) }
Update w usingw, , , < argmin,, {LCL(w,)+(V,LCL(®,), w—w,)+|[w—w,|J*/(2y)-
In p(w)} using an appropriate step size y.
t—t+1.
end while
return the conditional distribution P(y|x) = exp(—>_, w,(a){y, Q,(x)¥))/Z(x,w).

input x is distributed according to P(y|x). If a single prediction is required we might take the
most probable y by maximizing P(y|x) (itself a QUBO), or by minimizing some expected loss

measure.

4.2 Experimental results

We test the deterministic and probabilistic learning algorithms using quantum annealing to
evaluate the required gradients and subgradients. We consider two types of problems: synthetic
data based on weighted MAX-3-SAT, and standard test data arising from the labeling of digital
images. A summary of the results of our experiments is in Table 2.

Data sets MAX-3-SAT (I) and Scene are learned using the zero-temperature algorithm and
data set MAX-3-SAT (II) using the finite-temperature conditional random field (CRF). The
MAX-3-SAT (IT) data learned as a CRF is solved under two approximations (P5, and P,) for

the required expectations with the more accurate P, approximation providing better results.
For comparison, the SVM loss is obtained under a model where the interaction terms J; ; of the
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Dataset dim(x) | dim(y) | dim(w) | Train | Test | SVM loss | QA loss
MAX-3-SAT (I) 20 34 2226 800 | 800 12.0% 8.6%
Scene 294 6 4425 1211 | 1196 10.4% 9.4%
MAX-3-SAT (I) 20 8 504 800 | 800 16.1% | 9.8% / 9.1%

Table 2: Summary of problems and experimental results. dim(x) and dim(y) are the dimensions
of inputs and outputs, dim(w) is the number of features in the parametric model, Train/Test
is the number of examples used for training and testing. The rightmost two columns measure
the relative Hamming error between true test set data (that was not used during training), and
model predictions. The SVM loss is the error under a model where each output component
is predicted independently of other components, and QA loss is the error measured by an
algorithm which accounts for correlations amongst output components that is trained and
tested using quantum annealing in hardware.

Ising model are constrained to be zero so that each component y; is predicted independently of
all other components. This model is called a support vector machine (SVM).

4.2.1 Zero temperature learning

Synthetic data: MAX-3-SAT (I) In this experiment we generate training and test data con-
sisting of 1600 instances of positive 20-dimensional real-valued inputs, and output bit-strings of
length 34, i.e. (x,y) € R? x {0,1}**. We model the 34 output bits using the 34 qubits of Figure
2(b) with index 73 or larger. We consider MAX-3-SAT instances with clauses (/,, /,, [;; 7) where
r > 0 is the weight of the clause, and /,,/,,; are its literals whose corresponding variables,
Y1sY55 Y3, map to three qubits out of the given 34. Furthermore, to strengthen our quadratic
features, we also require that exactly two of the edges between the qubits y,,,,y; be present in
our hardware graph (from Figure 2(b)). Thus, the number of possible clauses with all-positive
literals is 243 and by considering all positive/negative variations of the literals in the clause, the
total number of clauses is 8 x 243 = 1944. To make the data generation more tractable, we select
uniformly at random 1500 clauses out of the 1944. We also generate a matrix V' € R**1® with
uniformly independent random entries from [0,1].

Then a data point (x,y) is generated by choosing x € R* with entries uniformly and inde-
pendently at random from [0, 10]; the corresponding labels y € {0, 1}** are obtained by solving
the MAX-3-SAT instance '? with the 1500 clauses selected as above with clause i having weight
equal (x,v,), where v, is the ith column of V. The 1600 data points (x,y) generated in this
way are broken into two sets of 800; the first set of 800 data points is used for training and the
second for testing. This problem offers rich and complex couplings between the components
ofy.

We consider a set of basis 34 x 34 matrices {Q,} each of which has a 1 as the only non-zero
entry. There is one Q, with a 1 in each of the possible diagonal entries (these matrices will be
used to generate all the linear terms), and also one upper triangular matrix for each one of the

2We solved the MAX-3-SAT instance using the specialized solver maxsatz of Chu Min Li from
http://www.laria.u-picardie.fr/ cli/maxsatz2009.c .
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72 edges between the used qubits of Figure 2(b) (these matrices will be used to generate all the
quadratic terms). Thus, the set {Q,} consists of 34 + 72 = 106 matrices. The features can now
be written as g,(x)Q,,, where the dependence on x is linear on the parameters, that is,

OIcz(x) = (wa’x) + wg .

As x is 20-dimensional there is a total of 106 x (20 + 1) = 2226 parameters w. The optimal
parameters @* are learned by minimizing Eq. (6) of Section 4.1.1 using a subgradient method
with hardware quantum annealing used to evaluate the required subgradients.

To test the predictive quality of the learned classifier we measure the Hamming error be-
tween the predicted and true values. We quote results in terms of the relative Hamming error
which is the fraction of predicted output bits which are incorrect. For any w we can form the
corresponding Q(x) = > w,Q_(x) and minimize the resultant QUBO to obtain the predic-
tion y(x). It is instructive to look at this error on both the training set and the the test set as
the algorithm runs and an initial guess w is evolved towards w* = argmin_ F(w) (see Eq. (6)).
Typically, we find convergence within 400 updates of w,. At each w, we can determine the
relative Hamming error at points in the training and test sets. Results are presented in Fig. 5.
The Hamming error on the training set does not monotonically decrease because we do not
minimize this Hamming error directly but rather an upper bound to the Hamming error, and
because the QUBO minimizations carried out by quantum annealing do not always return the
global minimizer. The red curves show results when an exact software solver is used to prov-
ably minimize the QUBO globally. At each w, we also measure the relative Hamming error on
the test set. This error is usually higher than test set error because parameters w are optimized
to minimize an upper bound to the Hamming error measured on the training set, and not on
the test set.

As a reference, we consider the smallest Hamming loss obtained using the linear classifier
that ignores all the quadratic features. The lack of features which couple output bits means that
each output bit is predicted separately (and the resultant algorithm is the well known support
vector machine (SVM) with linear kernel). In these experiments, the SVM classifier has 12.04%
relative Hamming error, compared to the hardware learning/testing which has 8.62% relative
Hamming error.

We see for this problem that

e hardware quantum annealing is currently effective enough to be used within an inner
loop optimization for convex structured learning algorithms

e the improvement in predictive accuracy by incorporating pairwise interactions between
output bits is significant, and reduces errors rates from 12% to less than 9%.

Keeping the quadratic terms in the optimization objective function can lead to significantly
better learning when multiple correlated output bits must be predicted. Unfortunately, these
better performing algorithms come at a high cost - the underlying computational problems
become much more difficult. As quantum annealing hardware improves both in terms of hard-
ware speed and the sizes of problems that can be addressed, we see an opportunity to continue
harnessing these better learning algorithms in regimes where conventional approaches begin to
fail due to increasing computational difficulty.
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Figure 5: Comparing the performance on training and test data for the exact (red curves) and
hardware (blue curves) solvers during the learning algorithm for MAX-3-SAT (I). Training and
test set errors were measured on a subset of 100 examples drawn randomly from the 800 test
and training examples.

Labeling the scene type of digital images Asa second example of zero-temperature learning
we address a standard benchmark problem first presented in [ ]. The data arises from
labeling digital photographs with one or more of the 6 possible annotations: Beach, Sunset,
Fall Foliage, Field, Mountain, and Urban. The annotations to an image are encoded in 6 bits
[Vpeachs " * s YUrban] Where the bit being on indicates the presence of the label annotation. Images
are converted into 294 real inputs by generating features based on color histograms within sub-
blocks of the images. Further details are found in [ ]. This dataset has 1211 training
images and 1196 testing images.

The mapping from image features to labels is modeled by using the set of 6 qubits g,,; =
beach> 9122 = Vsunserr 9123 = Veall> G125 = VFicld> 9126 = IMountain> A0 G127 = Yyrpan (see Figure
2(b)) connected as the complete bipartite graph Kj ;. The dataset consists of datapoints (x,y) €
R?* x {0,1}°. Features for this problem are defined exactly as for the MAX-3-SAT example
above; that is, for each linear and edge term the associated weight is learned as a linear function
of x plus an offset. Since there are 6 linear terms and 9 edges, the total number of parameters is
(649) x (294 + 1) = 4425.

Here, the Hamming error of the linear classifier is 10.4%, while the learning algorithm run
using the quantum processor has 9.4% Hamming error. The gains here by including corealtions
between components of y are more modest due to the weaker interactions between the scene

types.
This result is comparable with the current state-of-the-art found in the literature.

4.2.2 Finite temperature learning

Learning at finite temperature utilizes the entire distribution over bit-strings y, and not just the
minimal energy bit-string. For any given set of QUBO parameters Q our learning algorithm
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assumes the distribution of the strings y is Boltzmann with p(y) o< exp(—(y,Qy)). However,
as described in Section 4.1.2 to obtain such samples using hardware requires an importance
sampling correction. To understand how accurate these corrections are we performed two
types of experiments.

We generated 800 problems with randomly generated Q defined over 8 variables and con-
nected as K, , (we used qubits q,,(, 915, 9123 91240 9125 Q126> G127 A0 @5 from Figure 2(b)). Each
matrix element Q; ; is independently drawn uniformly at random from the interval [—1,1].
For each problem (each Q,, £ = 1,...,800) 100 samples were drawn from the hardware, 100
times. We considered the two possible models discussed in Section 4.1.2 for the probability
distribution determining the samples returned from the hardware — PS. which allows for an
effective temperature 7, and P, which allows for problem-dependent temperatures and shifts

£ on Q.

To fit a single problem-independent temperature T, for the model P, we maximized the
likelihood of all the observed data (800 problems together) with respect to T;. This resulted
in T, = 21 mK which is in reasonable agreement with the true physical temperature of the
hardware. To assess the goodness of this fit we compare the empirical probabilities (defined
by frequency counts) with the probabilities defined by the Boltzmann distribution with 7, =
21 mK. The results are summarized in Figure 6(a). As it can be seen, many data points are
close to the diagonal line of the plot, but there is still significant spread indicating deviations
from this simple model. This observation prompted the more refined model which allows for
both problem-dependent temperatures and shifts to Q. For each of the 800 problems {Q,} we
fit an effective temperature 7, and shift £,. As it can be seen in Figure 6(b), the more complex
model P, is an almost perfect fit to the observed data. Note that the introduction of problem-
specific parameters 7, and &, introduces 14+8+16=25 parameters so the quality of the model
is bound to improve. However, with these 25 parameters we manage to accurately assign a/l
256 probabilities of each of the 8 qubit configurations.

Synthetic data: MAX-3-SAT (II) For this set of experiments we generated MAX-3-SAT data
points as before, except for the following differences: we considered problems with 8 bits rather
than 34, but allowed all possible clauses of 3 literals to appear (that is, 2° x (2) = 448). Thus,
a data point is of the form (x,y) € R x {0,1}®, and the number of training and test points is
again 800. We map the 8 bits into a K, , subgraph in the hardware using qubsits g,,, —¢g,,,. Thus,
the number of features/parameters is 21 x (8 + 16) = 504. We used 1-norm regularization that
favors sparse solutions and ameliorates over fitting.

For learning we used the algorithm described in Section 4.1.2 using both P§. and P, to eval-
uate the importance weights. The P§. approximation uses 7, = 21 mK determined above, and
the P, model uses a value obtained from fitting to a set of 100 hardware samples. As a baseline
the SVM model (which predicts all 8 output bits independently) gives a relative Hamming error
of 16.1%. The learning algorithm run using the quantum processor improves upon this to give
relative Hamming errors of 9.8% and 9.1% respectively for models using importance weights
based on P%, and P respectively. Both the P and P used the same number of hardware
samples.

The improved hardware model based upon P g pays benefits both in terms of test set pre-
diction accuracy, and also in terms of minimizing the convex objective function LCL(w) (see

27



o
©
T

o
©
T

Boltzmann Distribution
o

e
w
T

o
N

0.1r

Figure 6: (a) Scatter plot of empirical probabilities and Boltzmann probabilities defined by the
best fitting temperature 7, = 21 mK. Each point corresponds to one of the 256 states of 8
qubits and one of the matrices Q,; its x-coordinate is the observed frequency in the hardware,
while its y-coordinate is the probability using the Boltzmann distribution P3(:|Q,) (see Eq.
(9)) with the fitted temperature T, = 21 mK. (b) Scatter plot resulting from a fit to the P
model which additionally allows for a problem dependent offset £ to Q. In this case the y
axis is the probability using the problem dependent Boltzmann distribution P4(:|Q,) (see Eq.

(11)).
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Figure 7: (a) Training and test errors of conditional random fields runs for MAX-3-SAT (1)
throughout the learning algorithm. (b) The decrease of the function LCL throughout the run
of the learning algorithm. The importance weights associated with P 4 better approximate the
true objective value.

Eq. (7). Fig 7(b) shows the objective value obtained under both models and compares this
with an exact evaluation in software. Fig 7(a) shows the evolution of relative Hamming error
on both test and training sets. Though the model based on P is slightly worse in terms of the
optimization objective, it performs essentially equivalently in both training and test set error.
We further notice that though the objective function has converged there remains variation in
the Hamming error on the training set. This is due to the flatness of the objective around its
minimum. For this reason the learning algorithm returns the w with the lowest Hamming on
the training set, rather than the final @ value which may have worse Hamming error.

5 Conclusions

In this paper we provide algorithms and experimental validation for the use of quantum an-
nealing hardware in machine learning applications. The focus was on structured supervised
learning where multiple output bits must be predicted as a function of some input. The Ising
model is used to enable learning of interactions between output bits for improved prediction
over techniques which predict output bits independently. Without constraints on the allowed
types of output interactions this problem is NP-hard. We imposed no such constraints and
relied upon quantum annealing as a heuristic for the resulting optimization and sampling prob-
lems.

We showed how existing algorithms for both zero-temperature and finite-temperature learn-
ing can exploit hardware which approximately minimizes and samples Ising energy functions.
On both synthetic and real world problems we demonstrated the improvements that are possi-
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ble by exploiting correlations in output bits. In some cases the gains can be quite significant.

Due to the small scale of the current generation of annealing hardware all of the experi-
ments reported here can also be carried out in software. However, as larger hardware becomes
available we anticipate rapidly reaching the point where exact software solution becomes im-
possible. The hardware utilized here having 128 qubits has treewidth 16, and is almost at the
limit of what can be done exactly in software. We have characterized the behavior of the hard-
ware for both optimization and sampling. With current hardware the bulk of time is spent on
programming, thermalization, and readout, and not on the actual combinatorial task. Conse-
quently, the potential for improvement is significant.

There are many directions for future work. Most important is the application to larger
problems and larger hardware. We are also actively exploring more complex learning models
with hidden variables that enable the discovery of novel features. We also comment that the
restriction to pairwise interactions is not limiting, but that the best way to overcome this con-
straint is likely to vary from problem to problem. Thus, models with higher-order features are
also under active exploration.
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