A quantum annealing approach to the Minimum Multicut problem on general graphs

William Cruz-Santos ${ }^{1}$ Salvador E. Venegas Andraca ${ }^{2}$ Marco Lanzagorta ${ }^{3}$

${ }^{1}$ Computer Engineering, CU-UAEM Valle de Chalco, Edo. de México, México
${ }^{2}$ Quantum Information Processing Group at Tecnológico de Monterrey, Escuela de Ciencias e Ingeniería
${ }^{3}$ US Naval Research Laboratory, 4555 Overlook Ave. SW Washington DC 20375, USA

QUBITS 2017

D-Wave Users Group
National Harbor, MD, Sept. 2017

1 Introduction

In this talk,
\diamond A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

1 Introduction

In this talk,
\diamond A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

Problem \rightarrow QUBO \rightarrow Embedding into the hardware
It is considered the Minimum Multicut problem which is NP-hard on trees and in general graphs.

1 Introduction

In this talk,
\diamond A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

Problem \rightarrow QUBO \rightarrow Embedding into the hardware
It is considered the Minimum Multicut problem which is NP-hard on trees and in general graphs.
\diamond We discuss the limitations of the current family of quantum annealing processors.

Contents

Section 2: Quantum annealing
Section 3: Combinatorial optimization
Section 4: Mapping of the Minimum multicut to QUBO
Section 5: Embedding into the hardware
Section 6: Hardware simulation
Section 7: Summary and conclusions

2 Quantum annealing

- QA annealing is used to travers from the ground state of an initial Hamiltonian to the ground state of the final Hamiltonian. [Finnila et al., 1994] [Kodawaki-Nishimori, 1998] [Farhi et al., 2001]

$$
\begin{gathered}
H(\tau)=A(s) H_{I}+B(s) H_{\text {problem }} \\
H_{\text {problem }}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}, \quad H_{I}=\sum_{i} \sigma_{i}^{x}
\end{gathered}
$$

Configuration

$t_{f}=20, \ldots, 2000 \mu s$

Adiabatic evolution

$$
i \frac{d|\Psi(t)\rangle}{d t}=H(t)|\Psi(t)\rangle
$$

Adiabatic evolution

$$
i \frac{d|\Psi(t)\rangle}{d t}=H(t)|\Psi(t)\rangle
$$

Adiabatic Theorem: [BornFock '28, Kato '51]

Adiabatic evolution

$$
i \frac{d|\Psi(t)\rangle}{d t}=H(t)|\Psi(t)\rangle
$$

Adiabatic Theorem: [BornFock '28, Kato '51]

$|\Psi(0)\rangle$ Ground state of $H(0) \longrightarrow|\Psi(T)\rangle$ ground state of $H(T)$

$$
T \gg \frac{1}{\min _{t}\{\gamma(t)\}^{2}}, \quad \gamma=E_{1}(t)-E_{0}(t)
$$

No crossing in the paths of the corresponding eigenvectors.

Adiabatic evolution

$$
i \frac{d|\Psi(t)\rangle}{d t}=H(t)|\Psi(t)\rangle
$$

Adiabatic Theorem: [BornFock '28, Kato '51]

$|\Psi(0)\rangle$ Ground state of $H(0) \longrightarrow|\Psi(T)\rangle$ ground state of $H(T)$

$$
T \gg \frac{1}{\min _{t}\{\gamma(t)\}^{2}}, \quad \gamma=E_{1}(t)-E_{0}(t)
$$

No crossing in the paths of the corresponding eigenvectors.
Linear interpolation between H_{0} and H_{1} : [Farhi et al., 2001]

$$
\begin{gathered}
H(s)=(1-s) H_{0}+s H_{1}, \quad s=\frac{t}{T} \\
A(s) \sim(1-s), \quad B(s) \sim s
\end{gathered}
$$

(Experimental) Quantum annealing

$$
\begin{gathered}
H(\tau)=A(s) \sum_{i} \sigma_{i}^{x}+B(s) H_{\text {problem }} \\
H_{\text {problem }}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
\end{gathered}
$$

(Experimental) Quantum annealing

$$
\begin{gathered}
H(\tau)=A(s) \sum_{i} \sigma_{i}^{x}+B(s) H_{\text {problem }} \\
H_{\text {problem }}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
\end{gathered}
$$

(Experimental) Quantum annealing

$$
\begin{gathered}
H(\tau)=A(s) \sum_{i} \sigma_{i}^{x}+B(s) H_{\text {problem }} \\
H_{\text {problem }}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
\end{gathered}
$$

(Experimental) Quantum annealing

$$
\begin{gathered}
H(\tau)=A(s) \sum_{i} \sigma_{i}^{x}+B(s) H_{\text {problem }} \\
H_{\text {problem }}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
\end{gathered}
$$

[Lanting et al, 2014]

Adiabatic quantum optimization

- The ground state of H_{p} corresponds to a configuration $\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right) \in\{+1,-1\}^{N}$ of spins that minimize the following energy function

$$
E(\mathbf{s})=\sum_{i}^{N} h_{i} s_{i}+\sum_{j>i}^{N} J_{i j} s_{i} s_{j}
$$

Adiabatic quantum optimization

- The ground state of H_{p} corresponds to a configuration $\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right) \in\{+1,-1\}^{N}$ of spins that minimize the following energy function

$$
E(\mathbf{s})=\sum_{i}^{N} h_{i} s_{i}+\sum_{j>i}^{N} J_{i j} s_{i} s_{j}
$$

Finding s* with minimum energy $E\left(\mathbf{s}^{*}\right)$ is an NP-hard ${ }^{1}$ problem even on planar graphs. [Barahona, 1982]

Adiabatic quantum optimization

- The ground state of H_{p} corresponds to a configuration $\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right) \in\{+1,-1\}^{N}$ of spins that minimize the following energy function

$$
E(\mathbf{s})=\sum_{i}^{N} h_{i} s_{i}+\sum_{j>i}^{N} J_{i j} s_{i} s_{j}
$$

Finding s* with minimum energy $E\left(\mathbf{s}^{*}\right)$ is an NP-hard ${ }^{1}$ problem even on planar graphs. [Barahona, 1982]

From classical objective function to quantum Hamiltonian

Find the optimal assignment

$$
\begin{aligned}
& \mathbf{s}^{*}=\left(s_{1}^{*}, \ldots, s_{N}^{*}\right) \\
& E(\mathbf{s})=\sum_{i}^{N} h_{i} s_{i}+\sum_{j>i}^{N} J_{i j} s_{i} s_{j}
\end{aligned}
$$

Find the ground state

$$
\begin{aligned}
& \left|\psi_{g}\right\rangle=\left|\mathbf{s}^{*}\right\rangle=\left|s_{1}^{*}, \ldots, s_{N}^{*}\right\rangle \\
& H_{p}=\sum_{i}^{N} h_{i} \sigma_{i}^{z}+\sum_{j>i}^{N} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
\end{aligned}
$$

3 Combinatorial optimization

- NPO is the class of optimization problems, NP-hard are the most difficult problems in NPO
- Factor ϵ-approximation algorithms \mathcal{A} for problem Π,

$$
\forall x \in \Pi: \operatorname{cost}_{\Pi}(x, \mathcal{A}(x)) \leq \epsilon \cdot \mathrm{OPT}(x)
$$

- $A P X \subseteq$ NPO class of problems that can be approximated in polynomial time for some $\epsilon>1$.

3 Combinatorial optimization

- NPO is the class of optimization problems, NP-hard are the most difficult problems in NPO
- Factor ϵ-approximation algorithms \mathcal{A} for problem Π,

$$
\forall x \in \Pi: \operatorname{cost}_{\Pi}(x, \mathcal{A}(x)) \leq \epsilon \cdot \mathrm{OPT}(x)
$$

- $A P X \subseteq$ NPO class of problems that can be approximated in polynomial time for some $\epsilon>1$.

For some problems, it is possible to prove that even the design of an ϵ-approximation algorithm with small ϵ is impossible, unless $\mathrm{P}=\mathrm{NP}$.

3 Combinatorial optimization

- NPO is the class of optimization problems, NP-hard are the most difficult problems in NPO
- Factor ϵ-approximation algorithms \mathcal{A} for problem Π,

$$
\forall x \in \Pi: \operatorname{cost}_{\Pi}(x, \mathcal{A}(x)) \leq \epsilon \cdot \mathrm{OPT}(x)
$$

- $A P X \subseteq$ NPO class of problems that can be approximated in polynomial time for some $\epsilon>1$.

For some problems, it is possible to prove that even the design of an ϵ-approximation algorithm with small ϵ is impossible, unless $\mathrm{P}=\mathrm{NP}$.

The concept of inapproximated problems
Theorem [ALM, 1992]: There is a fixed $\epsilon>0$ and a polynomial-time reduction τ from SAT to MAX-3SAT such that for every boolean formula I :

$$
\begin{aligned}
I \in \mathrm{SAT} & \Rightarrow \operatorname{MAX}-3 \operatorname{SAT}(\tau(I))=1 \\
I \notin \mathrm{SAT} & \Rightarrow \operatorname{MAX}-3 \operatorname{SAT}(\tau(I))<\frac{1}{1+\epsilon} .
\end{aligned}
$$

In other words, achieving an approximation ratio $1+\epsilon$ for MAX-3SAT is NP-hard.

The concept of inapproximated problems
Theorem [ALM, 1992]: There is a fixed $\epsilon>0$ and a polynomial-time reduction τ from SAT to MAX-3SAT such that for every boolean formula I :

$$
\begin{aligned}
I \in \mathrm{SAT} & \Rightarrow \quad \operatorname{MAX}-3 \operatorname{SAT}(\tau(I))=1 \\
I \notin \mathrm{SAT} & \Rightarrow \operatorname{MAX}-3 S A T(\tau(I))<\frac{1}{1+\epsilon}
\end{aligned}
$$

In other words, achieving an approximation ratio $1+\epsilon$ for MAX-3SAT is NP-hard.

Classification of inapproximated problems [Arora-Lund, 1996]			
Class	Representative problem	Hard ratio	Best ratio
I	MAX-3SAT	$1+\epsilon$	1.2987 [AHO+97]
	MULTIWAY CUTS		$3 / 2-1 /\|S\|$ [CKR98]
II	MINIMUM SETCOVER	$O(\log n)$	$1+\ln \|n\|[\mathrm{J} 97]$
III	NEAREST LATTICE		
	VECTOR	$2^{n \log { }^{1-\gamma}}$	Not in APX [ABS+97]
IV	MAXIMUM CLIQUE	n^{ϵ}	$O\left(\frac{n}{(\log n)^{2}}\right)$ [BH92]

4 Mapping of the Minimum multicut to QUBO

Minimum multicut: Given a weighted graph $G=(V, E, w)$ and a set of pairs $H=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \subset V \times V$, find a multi-cut with minimum capacity, i.e., a subset $E^{\prime} \subseteq E$ such that the removal of E^{\prime} from E disconnects s_{i} from t_{i} for every pair $\left(s_{i}, t_{i}\right)$, where the capacity of E^{\prime} is given as $\sum_{e \in E^{\prime}} w(e)$.

4 Mapping of the Minimum multicut to QUBO

Minimum multicut: Given a weighted graph $G=(V, E, w)$ and a set of pairs $H=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \subset V \times V$, find a multi-cut with minimum capacity, i.e., a subset $E^{\prime} \subseteq E$ such that the removal of E^{\prime} from E disconnects s_{i} from t_{i} for every pair $\left(s_{i}, t_{i}\right)$, where the capacity of E^{\prime} is given as $\sum_{e \in E^{\prime}} w(e)$.

Min s-t cut

4 Mapping of the Minimum multicut to QUBO

Minimum multicut: Given a weighted graph $G=(V, E, w)$ and a set of pairs $H=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \subset V \times V$, find a multi-cut with minimum capacity, i.e., a subset $E^{\prime} \subseteq E$ such that the removal of E^{\prime} from E disconnects s_{i} from t_{i} for every pair $\left(s_{i}, t_{i}\right)$, where the capacity of E^{\prime} is given as $\sum_{e \in E^{\prime}} w(e)$.

Min s-t cut

3-multicut

4 Mapping of the Minimum multicut to QUBO

Minimum multicut: Given a weighted graph $G=(V, E, w)$ and a set of pairs $H=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \subset V \times V$, find a multi-cut with minimum capacity, i.e., a subset $E^{\prime} \subseteq E$ such that the removal of E^{\prime} from E disconnects s_{i} from t_{i} for every pair $\left(s_{i}, t_{i}\right)$, where the capacity of E^{\prime} is given as $\sum_{e \in E^{\prime}} w(e)$.

Min s-t cut

3-multicut

- For $k=1,2$, it is solvable in polynomial time. [Bollobas, 79] [Seymour, 79]
- For $k \geq 3$, Minimum Multi-Cut becomes APX-hard. [Dahlhaus, 94]
- It is NP-hard even if restricted to trees of height 1. [Garg et al., 97]

QUBO formulation of Minimum multicut in trees

For each edge $e \in G, x_{e}=1$ (in the cut), 0 (not in the cut)

$$
h_{G}=h_{\text {weight }}+h_{\text {penalty }}
$$

1. $h_{\text {weight }}=\sum_{e \in G} w(e)\left(1-x_{e}\right)$
2. $h_{\text {penalty }}=\lambda_{\text {path }} \sum_{i=1}^{k} \prod_{e \in p_{i}} x_{e}$
p_{i} is the path from s_{i} to t_{i},
$\lambda_{\text {path }}=\sum_{e \in p_{i}} w(e)$
3. $\operatorname{deg}\left(h_{\text {penalty }}\right)=\max _{i}\left\{\right.$ length $\left.\left(p_{i}\right)\right\}$

There exists a unique path between every pair of vertices in a tree.

Reduction methods

$$
\begin{array}{r}
f(x)=\sum_{S \subseteq \llbracket 1, n \rrbracket} a_{S} \prod_{j \in S} x_{j} \\
\| \tau_{r} \\
f(x)=\min _{w \in\{0,1\}^{m}} g(x, w)
\end{array}
$$

$$
\operatorname{deg}\{g(x, w)\} \leq 2
$$

w "ancilla variables"
$\tau_{r} \quad$ "polynomial reduction"
(a) Negative terms can be reduced using only one extra ancilla variable [Freedman-Drineas, 2005]

$$
-x_{1} x_{2} \cdots x_{d}=\min _{w \in\{0,1\}} w\left((d-1)-\sum_{j=1}^{d} x_{j}\right)
$$

(b) For positive terms, only $\left\lfloor\frac{d-1}{2}\right\rfloor$ new ancilla variables are added.

$$
\begin{aligned}
& \prod_{j=1}^{d} x_{j}=S_{2}+\min _{w \in\{0,1\}} B-2 A S_{1} \\
& \text { if } d=2 k+2, \\
& \prod_{j=1}^{d} x_{j}=S_{2}+\min _{w \in\{0,1\}^{k}} B-2 A S_{1}+w_{k}\left(S_{1}-d+1\right) \\
& \text { if } d=2 k+1 . \\
& \text { See [Ishikawa, 2011]. }
\end{aligned}
$$

(c) In the penalty approach, for each occurrence of $x y$, a new term is added.
[Boros-Hammer, 2002]

$$
M(x y-2 x w-2 y w+3 w)
$$

Upper bound: $\quad M=1+2 \sum_{S \subseteq \mathbb{1}, n \rrbracket} a_{S}$
Ancilla variables: $O\left(n^{2} \log \operatorname{deg}(f)\right)$ Bad news: large coefficients

Example of reduction (1)

Logical graph of $h_{G}^{\text {qubo }}$.

Embedding into the Chimera. 13/20

Example of reduction (2)

Scalability of embedding

		logical variables	
n	k	H	$H_{\text {qubo }}$
20	3	10	17
30	5	14	23
45	6	22	37
100	30	75	199
100	130	97	402
100	200	99	559

$$
\begin{aligned}
H= & \{(6,10),(2,18),(11,17),(14,19),(8,13), \\
& (10,11),(3,5),(13,17),(7,14),(6,20)\} \\
h_{G}= & 14-x_{1}-x_{2}-x_{3}-x_{4}+9 x_{5}-x_{6}- \\
& x_{7}-x_{8}-x_{9}-x_{10}-x_{11}-x_{12}-x_{13}+ \\
& 9 x_{14}+10 x_{1} x_{2} x_{3} x_{4}+10 x_{6} x_{7}+10 x_{6} x_{8} x_{9}+ \\
& 10 x_{2} x_{3} x_{4} x_{5} x_{10} x_{11}+10 x_{3} x_{4} x_{8}+10 x_{2} x_{3} x_{12} \\
& 10 x_{2} x_{6} x_{7} x_{8}+10 x_{2} x_{12} x_{13}
\end{aligned}
$$

Setup: $N_{r}=100000$ readouts over 100 gauges.
$h_{G}^{\text {qubo }}: 22$ logical variables, 51 physical qubits

QUBO formulation of Minimum multicut on general graphs

Given a graph $G=(V, E)$ and a set of pairs $H=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$. The Minimum multicut problem can be logically formulated as follows:

$$
\min _{C \subseteq E}|C| \cdot \bigwedge_{\left(s_{i}, t_{i}\right) \in H} \neg \operatorname{connected}\left(s_{i}, t_{i}, C\right)
$$

where

$$
\operatorname{connected}\left(s_{i}, t_{i}, C\right) \equiv \forall U \subseteq V . \varphi\left(s_{i}, t_{i}, C\right)
$$

and

$$
\begin{aligned}
\varphi\left(s_{i}, t_{i}, C\right) \equiv & \left(\left(s_{i} \in U \wedge t_{i} \notin U\right) \rightarrow\right. \\
& \exists x \in U . \exists y \notin U . \exists e \in \operatorname{E.inc}(x, e) \wedge \operatorname{inc}(y, e) \wedge e \notin C))
\end{aligned}
$$

To verify if a given subset $C \subseteq E$ is a cut in G that disconnect every pair $\left(s_{i}, t_{i}\right)$, then it is sufficient to find a subset $U \subseteq V$ such that \neg connected $\left(s_{i}, t_{i}, C\right)$ is true.

Mapping: Logical variables $y_{u w}$ and x_{v}^{i}

- For each $\{u, w\} \in E, y_{u w}=1(0)$ if $\{u, w\}$ is (not) selected for a cut.
- For each $v \in V$ and $i=1, \ldots, k, x_{v}^{i}=1$ (0) if v is (not) in U where U is a subset of V.

Construction: Let f_{G} be defined as

$$
f_{G}=\operatorname{card}\left(y_{u w}\right)+\alpha \cdot \operatorname{penalty}\left(x_{v}, y_{u w}, H\right)
$$

where

$$
\begin{aligned}
& \operatorname{card}\left(y_{u w}\right)=\sum_{\{u, w\} \in E} y_{u w} \text { and } \\
\text { penalty }= & \sum_{i=1}^{k}\left(\neg\left(x_{s_{i}}^{i} \oplus x_{t_{i}}^{i}\right)+\sum_{\{u, w\} \in E}\left(x_{u}^{i} \oplus x_{w}^{i}\right) \oplus y_{u w}\right) \\
= & \sum_{i=1}^{k}\left(1-x_{s_{i}}^{i}-x_{t_{i}}^{i}+2 x_{s_{i}}^{i} x_{t_{i}}^{i}+\right. \\
& \sum_{\{u, w\} \in E}\left(x_{u}^{i}+x_{w}^{i}+y_{u w}-2 x_{u}^{i} x_{w}^{i}-2 x_{u}^{i} y_{u w}-\right. \\
& \left.\left.2 x_{w}^{i} y_{u w}+4 x_{u}^{i} x_{w}^{i} y_{u w}\right)\right)
\end{aligned}
$$

Using the Ishikawa method we obtain

$$
\text { penalty } \begin{aligned}
= & \sum_{i=1}^{k}\left(1-x_{s_{i}}^{i}-x_{t_{i}}^{i}+2 x_{s_{i}}^{i} x_{t_{i}}^{i}+\right. \\
& \sum_{\{u, w\} \in E}\left(x_{u}^{i}+x_{w}^{i}+y_{u w}-2 x_{u}^{i} x_{w}^{i}-2 x_{u}^{i} y_{u w}-\right. \\
& 2 x_{w}^{i} y_{u w}+4\left(x_{u}^{i} x_{w}^{i}+x_{u}^{i} y_{u w}+x_{w}^{i} y_{u w}+\right. \\
& \left.\left.\left.z_{u w}^{i}\left(1-x_{u}^{i}-x_{w}^{i}-y_{u w}\right)\right)\right)\right) \\
= & \sum_{i=1}^{k}\left(1-x_{s_{i}}^{i}-x_{t_{i}}^{i}+2 x_{s_{i}}^{i} x_{t_{i}}^{i}+\right. \\
& \sum_{\{u, w\} \in E}\left(x_{u}^{i}+x_{w}^{i}+y_{u w}+2 x_{u}^{i} x_{w}^{i}+2 x_{u}^{i} y_{u w}+2 x_{w}^{i} y_{u w}+\right. \\
& \left.\left.4 z_{u w}^{i}\left(1-x_{u}^{i}-x_{w}^{i}-y_{u w}\right)\right)\right)
\end{aligned}
$$

where $z_{u w}^{i}$ are ancilla variables.
f_{G} uses $k(n+m)+m$ variables.
α is upper bounded by card $\left(y_{u w}\right)$

Example of construction

Boolean variables to represent the given problem:

$$
\begin{aligned}
& x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}, x_{5}^{1}, x_{6}^{1}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \\
& x_{4}^{2}, x_{5}^{2}, x_{6}^{2}, y_{12}, y_{13}, y_{16}, y_{23}, y_{25}, \\
& y_{34}, y_{45}, y_{46}, y_{56}
\end{aligned}
$$

Ancilla variables

Logical graph of $f_{G}^{\text {qubo }}$
$z_{12}^{1}, z_{13}^{1}, z_{16}^{1}, z_{23}^{1}, z_{25}^{1}, z_{34}^{1}, z_{45}^{1}, z_{46}^{1}, z_{56}^{1}$
$z_{12}^{2}, z_{13}^{2}, z_{16}^{2}, z_{23}^{2}, z_{25}^{2}, z_{34}^{2}, z_{45}^{2}, z_{46}^{2}, z_{56}^{2}$

5 Summary and conclusions
\diamond The programming model is problem dependent.
\diamond Can we avoid the reduction of pseudo-Boolean functions into QUBO?
\diamond The minimum embedding is not always the best choice.
\diamond Approximate solutions are also useful.
\diamond To investigate programming inapproximated problems.

Thanks for your kind attention!

We thank to USRA (Universities Space Research Association) for support this project.

Contact: wdelacruzd@uaemex.mx

