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3US Naval Research Laboratory, 4555 Overlook Ave. SW Washington DC 20375, USA

QUBITS 2017
D-Wave Users Group

National Harbor, MD, Sept. 2017

1 / 20



1 Introduction

In this talk,

� A would like to discuss the quantum annealing approach to the solution of
combinatorial optimization problems:

Problem → QUBO → Embedding into the hardware

It is considered the Minimum Multicut problem which is NP-hard on trees
and in general graphs.

� We discuss the limitations of the current family of quantum annealing
processors.
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2 Quantum annealing

• QA annealing is used to travers from the ground state of an initial
Hamiltonian to the ground state of the final Hamiltonian. [Finnila et al.,

1994] [Kodawaki-Nishimori, 1998] [Farhi et al., 2001]

H(τ) = A(s)HI +B(s)Hproblem,

Hproblem =

N∑
i

hiσ
z
i +

N∑
j>i

Jijσ
z
i σ

z
j , HI =

∑
i

σxi

tf = 20, . . . , 2000µs
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Adiabatic evolution

i
d|Ψ(t)〉
dt

= H(t)|Ψ(t)〉

Adiabatic Theorem: [BornFock ’28, Kato ’51]

H(0)
H(T)

|Ψ(0)〉 Ground state of H(0) −→|Ψ(T )〉 ground state of H(T )

T � 1

mint{γ(t)}2 , γ = E1(t)− E0(t)

No crossing in the paths of the corresponding eigenvectors.

Linear interpolation between H0 and H1: [Farhi et al., 2001]

H(s) = (1− s)H0 + sH1, s =
t

T
.

A(s) ∼ (1− s), B(s) ∼ s
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(Experimental) Quantum annealing

H(τ) = A(s)
∑
i

σxi +B(s)Hproblem

Hproblem =
N∑
i

hiσ
z
i +

N∑
j>i

Jijσ
z
i σ

z
j

−→
[Lanting et al, 2014]
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Adiabatic quantum optimization

• The ground state of Hp corresponds to a configuration
s = (s1, . . . , sN ) ∈ {+1,−1}N of spins that minimize the following energy
function

E(s) =
N∑
i

hisi +
N∑
j>i

Jijsisj .

Finding s∗ with minimum energy E(s∗) is an NP-hard 1 problem even on
planar graphs. [Barahona, 1982]

From classical objective function to quantum Hamiltonian

Find the optimal assignment

s∗ = (s∗1, . . . , s
∗
N )

E(s) =

N∑
i

hisi +

N∑
j>i

Jijsisj

Find the ground state

|ψg〉 = |s∗〉 = |s∗1, . . . , s∗N 〉

Hp =

N∑
i

hiσ
z
i +

N∑
j>i

Jijσ
z
i σ

z
j
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3 Combinatorial optimization

• NPO is the class of optimization problems, NP-hard
are the most difficult problems in NPO

• Factor ε-approximation algorithms A for problem Π,

∀x ∈ Π : costΠ(x,A(x)) ≤ ε · OPT(x).

• APX ⊆ NPO class of problems that can be
approximated in polynomial time for some ε > 1.

For some problems, it is possible to prove that even the design of an
ε-approximation algorithm with small ε is impossible, unless P = NP.
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The concept of inapproximated problems

Theorem [ALM, 1992]: There is a fixed ε > 0 and a polynomial-time reduction
τ from SAT to MAX-3SAT such that for every boolean formula I:

I ∈ SAT ⇒ MAX-3SAT(τ(I)) = 1

I /∈ SAT ⇒ MAX-3SAT(τ(I)) <
1

1 + ε
.

In other words, achieving an approximation ratio 1 + ε for MAX-3SAT is
NP-hard.

Classification of inapproximated problems [Arora-Lund, 1996]

Class Representative problem Hard ratio Best ratio
I MAX-3SAT 1 + ε 1.2987 [AHO+97]

MULTIWAY CUTS 3/2− 1/|S| [CKR98]

II MINIMUM SETCOVER O(logn) 1 + ln |n| [J97]

III NEAREST LATTICE

VECTOR 2n log1−γ
Not in APX [ABS+97]

IV MAXIMUM CLIQUE nε O
(

n
(logn)2

)
[BH92]
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4 Mapping of the Minimum multicut to QUBO

Minimum multicut: Given a weighted graph G = (V,E,w) and a set
of pairs H = {(s1, t1), . . . , (sk, tk)} ⊂ V × V , find a multi-cut with
minimum capacity, i.e., a subset E′ ⊆ E such that the removal of E′

from E disconnects si from ti for every pair (si, ti), where the capacity
of E′ is given as

∑
e∈E′

w(e).

s

t

1 2

3

Min s-t cut

Cut
s0

s1

s2

t0

t1

t2

3-multicut

• For k = 1, 2, it is solvable in polynomial time. [Bollobas, 79] [Seymour, 79]

• For k ≥ 3, Minimum Multi-Cut becomes APX-hard. [Dahlhaus, 94]

• It is NP-hard even if restricted to trees of height 1. [Garg et al., 97]
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QUBO formulation of Minimum multicut in trees

For each edge e ∈ G, xe = 1 (in the cut), 0 (not in the cut)

hG = hweight + hpenalty

1. hweight =
∑
e∈G

w(e)(1− xe)

2. hpenalty = λpath

k∑
i=1

∏
e∈pi

xe

pi is the path from si to ti,

λpath =
∑
e∈pi

w(e)

3. deg(hpenalty) = maxi{length(pi)}

0

13 14

19

1

6

7

2 3

1015 16

18

4

5

128

17 9

11

There exists a unique path between every pair of vertices in a tree.
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Reduction methods

f(x) =
∑

S⊆[[1,n]]

aS
∏
j∈S

xj

ww�τr
f(x) = min

w∈{0,1}m
g(x,w)

deg{g(x,w)} ≤ 2

w “ancilla variables”

τr “polynomial reduction”

(a) Negative terms can be reduced using only

one extra ancilla variable

[Freedman-Drineas, 2005]

−x1x2···xd= min
w∈{0,1}

w

(
(d−1)−

d∑
j=1

xj

)

(b) For positive terms, only
⌊
d−1

2

⌋
new ancilla

variables are added.
d∏
j=1

xj=S2+ min
w∈{0,1}k

B−2AS1

if d=2k+2,
d∏
j=1

xj=S2+ min
w∈{0,1}k

B−2AS1+wk(S1−d+1)

if d=2k+1.

See [Ishikawa, 2011].

(c) In the penalty approach, for each occurrence
of xy, a new term is added.

[Boros-Hammer, 2002]

M(xy−2xw−2yw+3w)

Upper bound: M=1+2
∑

S⊆[[1,n]]
aS

Ancilla variables: O(n2 log deg(f))

Bad news: large coefficients
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Example of reduction (1)

H = {(6, 10), (2, 18), (11, 17), (14, 19), (8, 13),
(10, 11), (3, 5), (13, 17), (7, 14), (6, 20)}

hG = 14− x1 − x2 − x3 − x4 + 9x5 − x6 −
x7 − x8 − x9 − x10 − x11 − x12 − x13 +

9x14 + 10x1x2x3x4 + 10x6x7 + 10x6x8x9 +

10x2x3x4x5x10x11 + 10x3x4x8 + 10x2x3x12 +

10x2x6x7x8 + 10x2x12x13ww�
hqubo
G : 22 logical variables, 51 physical qubits

Logical graph of hqubo
G .

Embedding into the Chimera. 13 / 20



Example of reduction (2)

H = {(6, 10), (2, 18), (11, 17), (14, 19), (8, 13),
(10, 11), (3, 5), (13, 17), (7, 14), (6, 20)}
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x7 − x8 − x9 − x10 − x11 − x12 − x13 +

9x14 + 10x1x2x3x4 + 10x6x7 + 10x6x8x9 +

10x2x3x4x5x10x11 + 10x3x4x8 + 10x2x3x12 +
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hqubo
G : 22 logical variables, 51 physical qubits

Scalability of embedding

logical variables
n k H Hqubo

20 3 10 17
30 5 14 23
45 6 22 37
100 30 75 199
100 130 97 402
100 200 99 559

Energy level
E=5 E=6 E=7 E=8

N
u
m

b
er

 o
f 

o
cu

rr
en

ce
s

0

100

200

300

400

500

600

700

800

20
50
100
500
700

Annealing time µ sec

Setup: Nr = 100000 readouts over 100 gauges.
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QUBO formulation of Minimum multicut on general graphs

Given a graph G = (V,E) and a set of pairs H = {(s1, t1), . . . , (sk, tk)}. The
Minimum multicut problem can be logically formulated as follows:

min
C⊆E

|C|.
∧

(si,ti)∈H

¬connected(si, ti, C)

where
connected(si, ti, C) ≡ ∀U ⊆ V.ϕ(si, ti, C)

and

ϕ(si, ti, C) ≡ ((si ∈ U ∧ ti /∈ U)→
∃x ∈ U.∃y /∈ U.∃e ∈ E.inc(x, e) ∧ inc(y, e) ∧ e /∈ C)).

To verify if a given subset C ⊆ E is a cut in G that disconnect every pair
(si, ti), then it is sufficient to find a subset U ⊆ V such that
¬connected(si, ti, C) is true.
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Mapping: Logical variables yuw and xiv

• For each {u,w} ∈ E, yuw = 1 (0) if {u,w} is (not) selected for a cut.

• For each v ∈ V and i = 1, . . . , k, xiv = 1 (0) if v is (not) in U where U is
a subset of V .

Construction: Let fG be defined as

fG = card(yuw) + α · penalty(xv, yuw, H)

where
card(yuw) =

∑
{u,w}∈E

yuw and

penalty =

k∑
i=1

(
¬(xisi ⊕ x

i
ti) +

∑
{u,w}∈E

(xiu ⊕ xiw)⊕ yuw
)

=

k∑
i=1

(
1− xisi − x

i
ti + 2xisix

i
ti +∑

{u,w}∈E

(xiu + xiw + yuw − 2xiux
i
w − 2xiuyuw −

2xiwyuw + 4xiux
i
wyuw)

)
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Using the Ishikawa method we obtain

penalty =

k∑
i=1

(
1− xisi − x

i
ti + 2xisix

i
ti +∑

{u,w}∈E

(xiu + xiw + yuw − 2xiux
i
w − 2xiuyuw −

2xiwyuw + 4(xiux
i
w + xiuyuw + xiwyuw +

ziuw(1− xiu − xiw − yuw)))
)

=

k∑
i=1

(
1− xisi − x

i
ti + 2xisix

i
ti +∑

{u,w}∈E

(xiu + xiw + yuw + 2xiux
i
w + 2xiuyuw + 2xiwyuw +

4ziuw(1− xiu − xiw − yuw))
)

where ziuw are ancilla variables.

fG uses k(n+m) +m variables.

α is upper bounded by card(yuw)
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Example of construction

Boolean variables to represent the
given problem:

x1
1, x

1
2, x

1
3, x

1
4, x

1
5, x

1
6, x

2
1, x

2
2, x

2
3,

x2
4, x

2
5, x

2
6, y12, y13, y16, y23, y25,

y34, y45, y46, y56

Ancilla variables

z1
12, z

1
13, z

1
16, z

1
23, z

1
25, z

1
34, z

1
45, z

1
46, z

1
56

z2
12, z

2
13, z

2
16, z

2
23, z

2
25, z

2
34, z

2
45, z

2
46, z

2
56

Logical graph of fqubo
G
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5 Summary and conclusions

� The programming model is problem dependent.

� Can we avoid the reduction of pseudo-Boolean functions into QUBO?

� The minimum embedding is not always the best choice.

� Approximate solutions are also useful.

� To investigate programming inapproximated problems.
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