

ARL

Quantum-Classical Hybrid Machine Learning for Gene Regulatory Pathways

Radhakrishnan Balu, CISD-ARL

Qubits North America, 09/26/2018, Knoxville, TN

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Outline of the Talk

ARL

• A Brief introduction to the problem

- Review of Bayesian Networks
- Embedding challenges

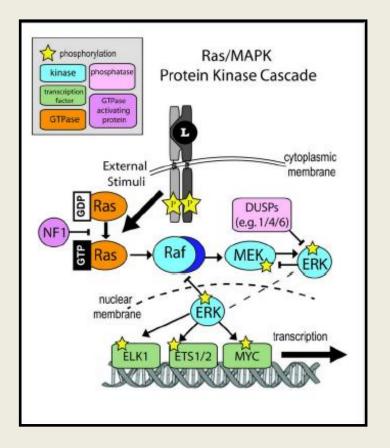
U.S. ARMY RDECOM®

• Probabilistic Logic Programming (ML)

Solution Architecture and Results

MAPK/Raf Pathway

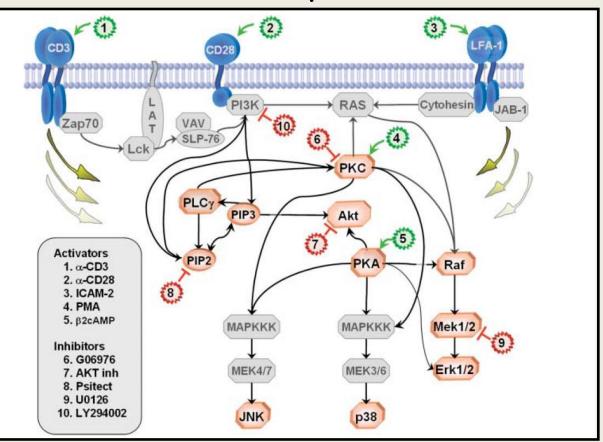
ARL



MAPK/Ras pathway. Source: Discovery Medicine

Bio Signaling Pathways

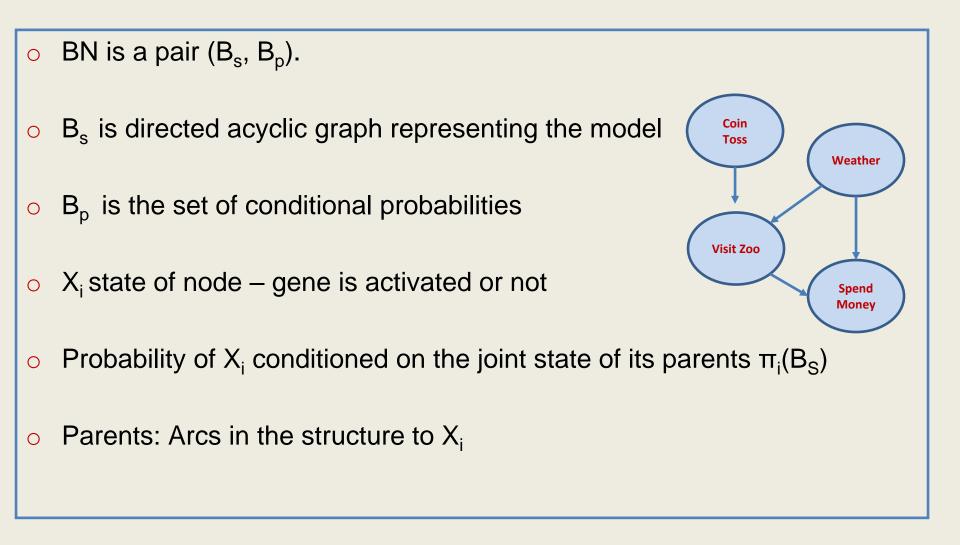
A Bayesian Network based Causal Relationship Elucidation



Sachs, K.; Perez, O.; Pe'er, D.; Laughenburger, A. D.; Nolan, P. G. Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. *Science* 2005, *308*.

U.S.ARM

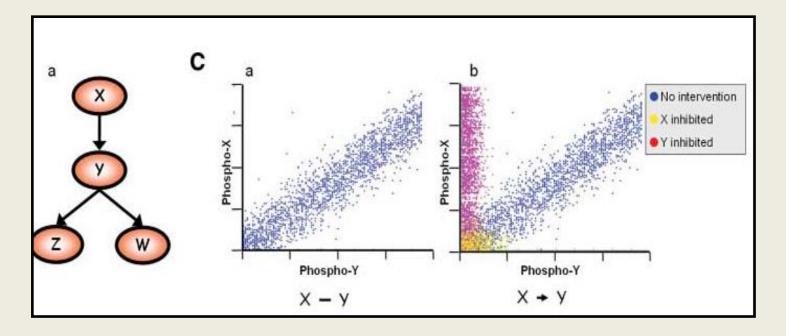
Bayesian Networks



U.S. ARMY RDECOM®

Bayesian Networks

Proteomics data from flow cytometry Concentrations of proteins as probabilities



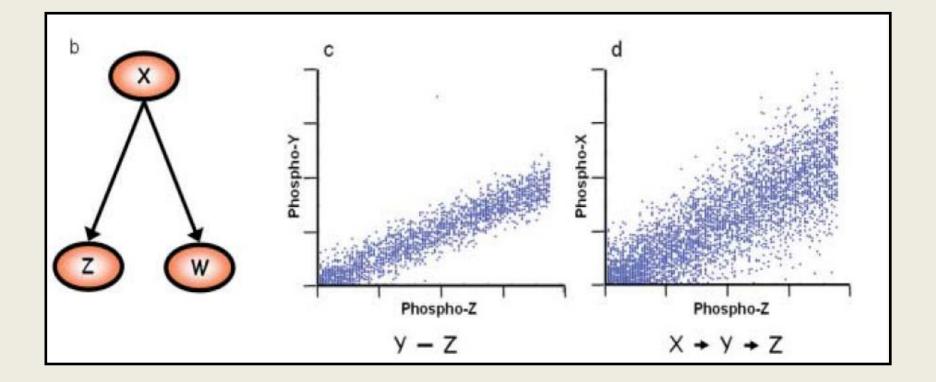
Bayesian networks for hypothetical proteins X, Y, Z, and W. In this model, X influences Y, which, in turn, influences both Z and W.

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Bayesian Networks

Acyclic directed graphs



- Biological pathways may contain cycles
- BN May miss some dependencies

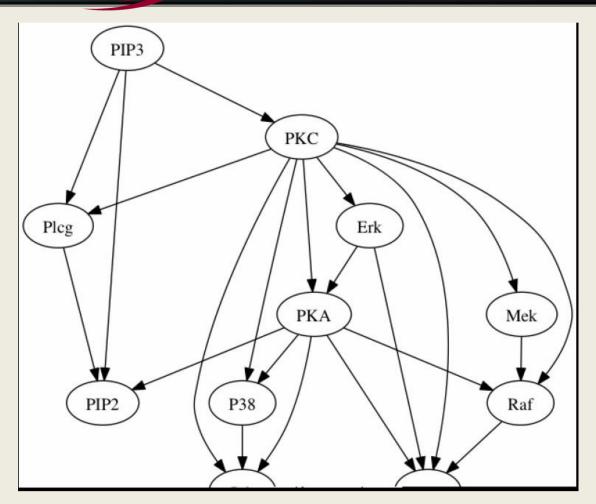
The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

u.s. army **RDECOM**®

PRISM Generated BN

ARL



Nand Kishore, Radhakrishnan Balu, and Shashi P. Karna, "Modeling Genetic Regulatory Networks Using First-Order Probabilistic Logic", **ARL-TR-6354**, 2013.

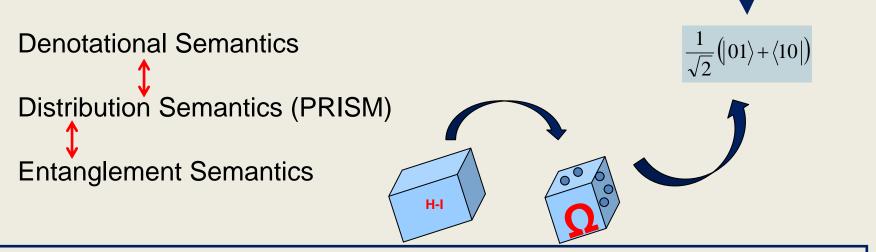
The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

U.S.ARM

Non-commutative Probability

- Quantum Probability Space
- Attach Probability Amplitudes to H-interpretations
- Projections of H
- ρ State

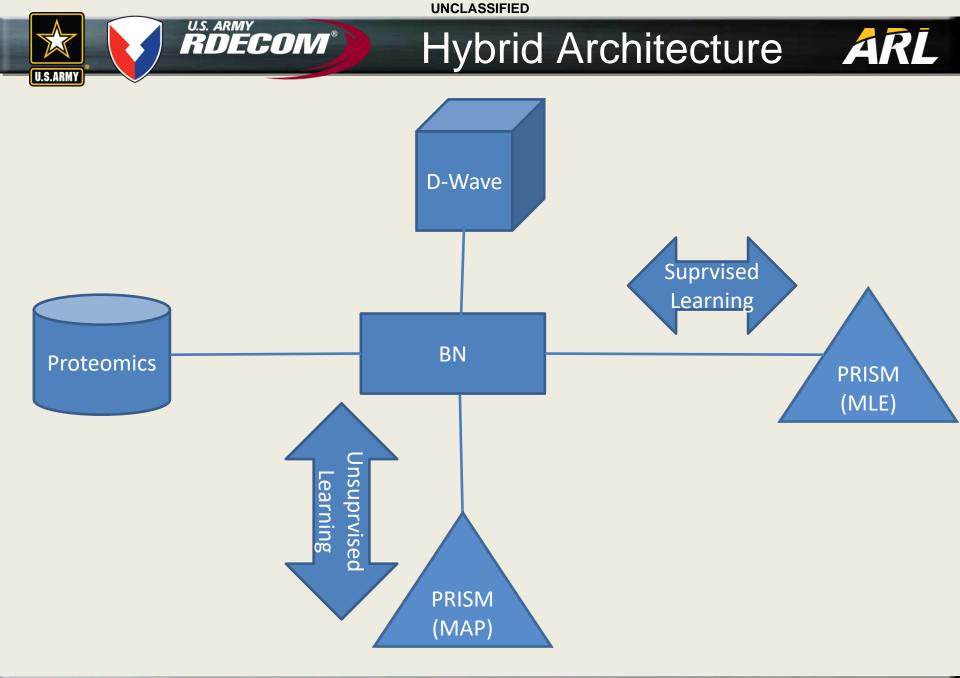


Radhakrishnan Balu: Quantum probabilistic logic programming, Proc. SPIE-DSS, quantum information and computation, Baltimore MD (2015)

The Nation's Premier Laboratory for Land Forces

(Quantum) Probabilistic Logic ARI

 $QP = (\mathrm{H}^{\infty}, P(H), P)$



Quantum Annealing

2000 qubit processor

U.S. ARMY RDECOM®

- Restricted class of optimization problems
- Quadratic Unconstrained Binary Optimization (QUBO)

O'Gorman, B. A., Perdomo-Ortiz, A., Babbush, R., Aspuru-Guzik, A. & Smelyanskiy, V. *Bayesian network structure learning using quantum annealing. European Physics Journal Special Topics* **224**, 163–188 (2015)

Current Implementation

• Number of nodes of BN = 8

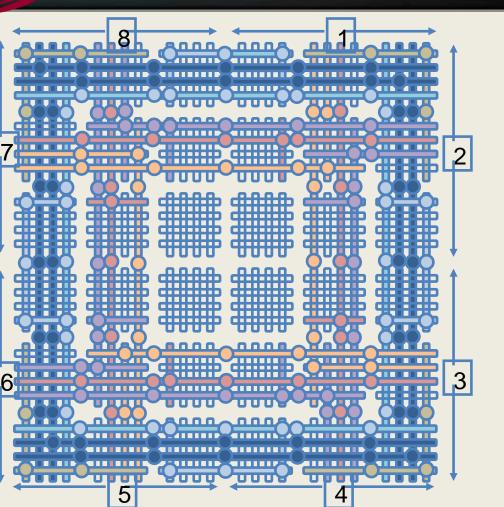
RDECOM

• Number of parents allowed = 3

• Number of logical qubits = 230

Number of Physical qubits ~ 2000

Embedding Challenge



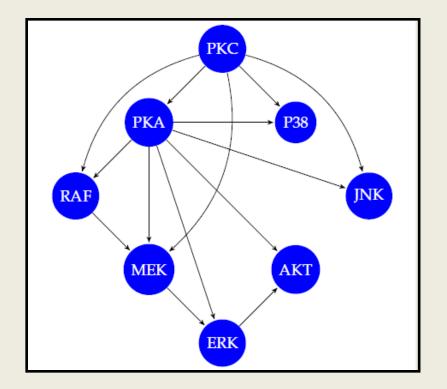
• Denny's help with manual embedding

Routine based embedding also worked

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

MAPK/Raf Pathway



Bayesian Network encoding the causal relationship in MAPK/Raf signal transduction pathway in human T-cells. Only eight of the units are considered here.

Bayesian Theorem

$$p(B_S|D) = \frac{p(D|B_S)p(B_S)}{p(D)}$$

$$p(D|B_S) = \prod_{i=1}^n \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\alpha_{ijk}}$$

D – Data

U.S. ARMY RDECOM®

 $B_{S} - BN$

 α – Dirichlet priors (assumed uniform here)

$$s_i(\Pi_i(B_S)) = -\log\left(\Pi_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})}\right) \Pi_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\alpha_{ijk}}$$
$$\log(p(D|B_S)) = -\mathbf{s}(B_S) = \sum_{i=1}^n s_i(\Pi_i(B_S))$$

The Nation's Premier Laboratory for Land Forces

U.S.ARMY

QUBO

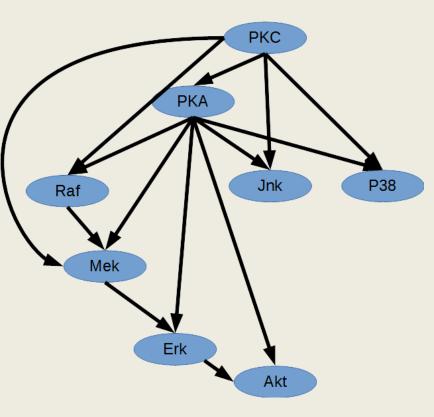
• BN with at most three parents constraint

No cycles constraint

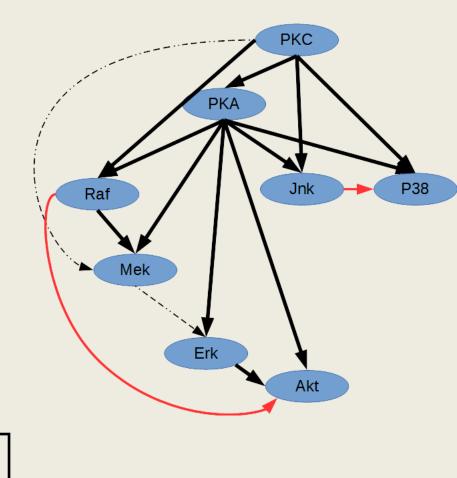
•
$$H_{total} = H_{score} + H_{max} + H_{cycle}$$

QUBO conversion

O'Gorman, B. A., Perdomo-Ortiz, A., Babbush, R., Aspuru-Guzik, A. and Smelyanskiy, V.: Bayesian network structure learning using quantum annealing, European Physics Journal Special Topics 224, 163-188 (2015).



U.S. ARMY RDECOM®



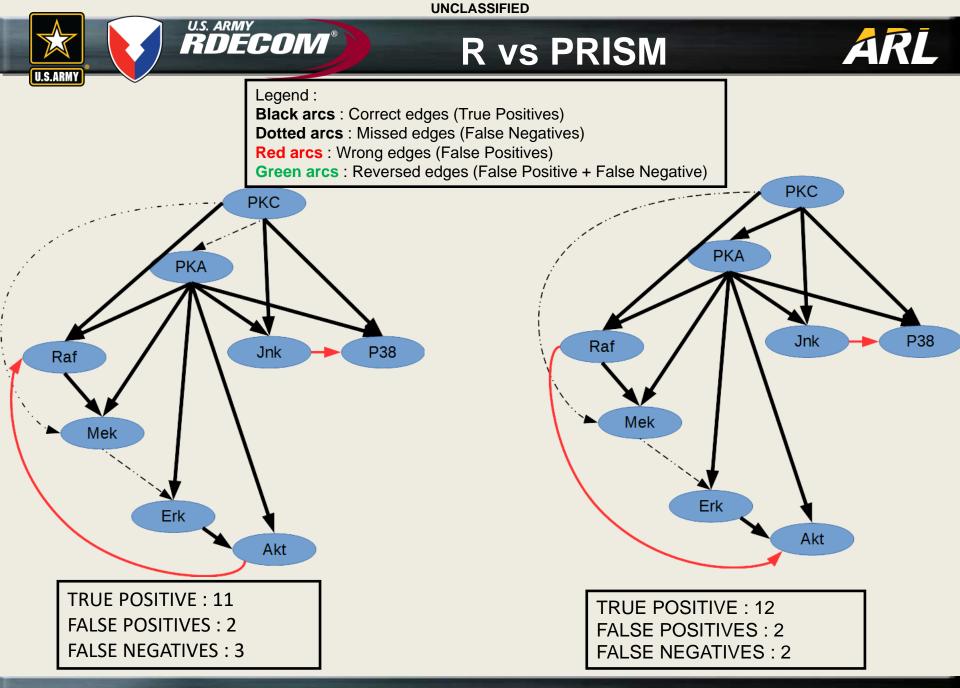
امميمهما	
Legend	

U.S.ARMY

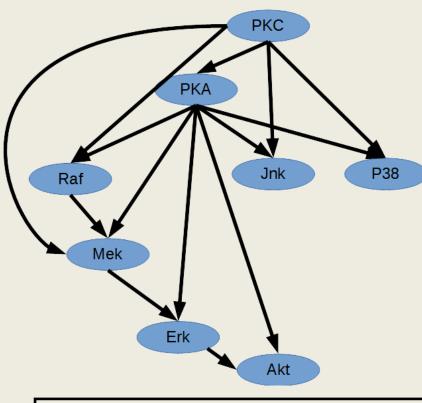
Black arcs	: Correct	edges	(True	Positives))
Dotted arcs	: Missed	edges	(False	Negative	s)

- **Red arcs** : Wrong edges (False Positives)
- **Green arcs** : Reversed edges (False Positive + False Negative)

TRUE POSITIVE : 12 FALSE POSITIVES : 2 FALSE NEGATIVES : 2



Expt. vs R SCORE ARL

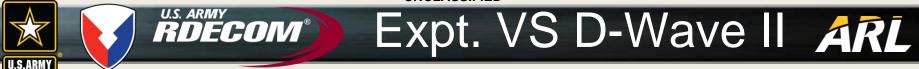


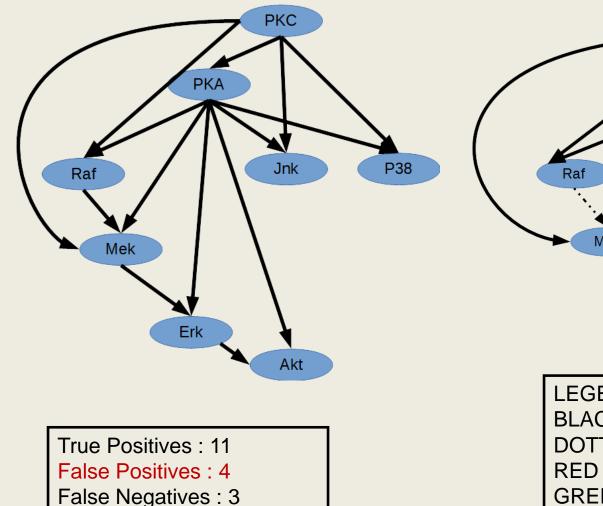
PKC PKA Jnk P38 Raf Mek Erk Akt **TRUE POSITIVE : 11** FALSE POSITIVES : 2

FALSE NEGATIVES: 3

Legend :

Black arcs : Correct edges (True Positives) Dotted arcs : Missed edges (False Negatives) Red arcs : Wrong edges (False Positives) Green arcs : Reversed edges (False Positive + False Negative)





PKC PKA Jnk P38 Mek Erk Akt LEGEND:

BLACK EDGES : CORRECT DOTTED : MISSING RED : EXTRA EDGES GREEN : REVERSED

UNCLASSIFIED

UNCLASSIFIED

RDECOM[®]

MAPK/Raf Pathway

	Raf BN	Raf BN with Error Correction
No of instances with cycles	0	1
No of false positives	6-13	6-14
Average true positives	8.3	8.6
Median of true positives	9	9

Results from 30 annealing schedules for the MAPK/Raf BN with 14 arcs.

RDECOM Summary and Future Plans ARL

- Real world application embedded
- Limited error correction applied
- Essential features of BN captured
- Scalability beyond 8-nodes BN
- ML applied to QUBOs (U. Calgary)
- Benchmarking against classical solutions
- Dynamic BN and Bayesian Neural Networks

Acknowledgements

Annealings: Ajinkya Borle

U.S. ARMY RDECOM®

Graduate Student, UMBC

D-Wave technical support team

Denny, Murray, and Rene

The Nation's Premier Laboratory for Land Forces

U.S.ARM

Thank you for your attention

The Nation's Premier Laboratory for Land Forces

WMCLASSIFIED