Scott N. Genin, PhD Head of Materials Discovery

scott.genin@otilumionics.com www.otilumionics.com

Quantum Chemistry on Quantum Annealers March 2019

What We Do Materials Discovery

Developing advanced materials to solve large scale industrial problems for displays + lighting

iPhone X

Organic Light Emitting Diode (OLED)

Light from organic pigments sandwiched between electrodes

Organic Pigments

ΟΤΙ

Closed Loop Development with Customer Feedback

In-house end-to-end testing from materials discovery up to production testing

Our Materials Discovery Platform

Advanced computation + simulation + ML/AI

CPU

OTI Lumionics Inc. © 2019 - Confidential

QPU (Quantum Processing Unit)

GPU

Example: Aerelight for Print™

Flexible OLED module for print + packaging

OTI

Example: ConducTorr[™] for Transparent Display

Automotive Demonstration

Quantum Chemistry

Why do we care?

Understanding and prediction of the Structure -> Property relationship

8

●TI

Overview of Quantum Chemistry on a Quantum Computer

$$H = \sum_{ij} C_i^j a_j^{\dagger} a_i + \sum_{ijkl} C_{ij}^{kl} a_k^{\dagger} a_l^{\dagger} a_j a_i$$
$$H = \sum \widehat{P}_i$$
$$|\psi(\theta)\rangle = \exp(\widehat{T} - \widehat{T}^{\dagger}) |\psi_0\rangle$$
$$\widehat{T} = \widehat{T}_1 + \widehat{T}_2 + \cdots$$

Generate a fermionic Hamiltonian

Transform into spin basis (function of Pauli Operators)

Construct Ansatz (UCC)

$$\widehat{T}_1 = \sum_{ij} C_i^j a_j^\dagger a_i \qquad \widehat{T}_2 = \sum_{ijkl} C_{ij}^{kl} a_k^\dagger a_l^\dagger a_j a_i$$

Variational Quantum Eigensolver

$$\widehat{H} = \sum \widehat{P}_i$$
 Where $\widehat{P}_i = \prod \sigma_j^n$, $n = \{x, y, z\} \& j = \text{qubit index}$

 $E_0 \leq \sum \langle \Psi_i | \hat{P}_i | \Psi_i \rangle$ Where Ψ is wavefunction of the ith Pauli word

With serial processing, time scales linearly with number of Pauli words

BK transformation generates O(N⁴) Pauli words

*Peruzzo et al. Nat. Comm. 5 (2014)

ΟΤΙ

Hidden Consequences

Is this "kink" a hardware problem or theory problem?

Kandala et al. (2017) Nature 549, 242-246

Broken symmetry GHF between 1.5 A – 1.6 A, as it transitions from singlet to triplet

Unitary Coupled Cluster

Quantum computers cannot directly encode

$$U = \exp(T_1 + T_2 + \cdots)$$

Trotterized
$$U \approx \left(\exp\left(\frac{T_1}{M}\right)\exp\left(\frac{T_2}{M}\right)\dots\right)^M \quad M \ge 1$$

Even simplest fermionic operators are lengthy combination of Pauli terms

$$a_{5}^{\dagger}a_{4}^{\dagger}a_{3}a_{2} - a_{2}^{\dagger}a_{3}^{\dagger}a_{4}a_{5}$$

$$\rightarrow \frac{i}{8}(x_{2}y_{4} + z_{1}x_{2}z_{3}y_{4} - y_{2}x_{4} - z_{1}y_{2}z_{3}x_{4} - y_{2}x_{4}z_{5} - z_{1}y_{2}z_{3}x_{4}z_{5} + x_{2}y_{4}z_{5} + z_{1}x_{2}z_{3}y_{4}z_{5})$$

Lengthy combinations of Pauli terms increases quantum circuit depth

LiH/STO-6G, C. Hempel et al. Phys. Rev. X 8, 031022 (2018)

Qubit Coupled Cluster Method

 $\Psi(\tau,\omega) = \widehat{U}(\tau)|\omega\rangle$

General form of qubit methods

 $\widehat{U}(\tau) = \prod_{k}^{N} \exp\left(\frac{i\tau_k \widehat{P}_k}{2}\right)$

 \widehat{P} is Pauli word entanglers

 $E(\tau,\omega) \leq \left\langle \omega \left| U(\tau)^{\dagger} \widehat{H} U(\tau) \right| \omega \right\rangle$

Variational search for ground state

PES Curve for LiH & H₂O

Quantum Chemistry on Quantum Annealers

Universal Gate

IBM Q (20 qubits)

Quantum Annealer

D-Wave 2000Q (2048 qubits)

Annealer is suitable for solving binary optimization problems (not applicable for quantum chemistry)

We have developed a quantum solver for quantum chemistry on a quantum annealer

ΟΤΙ

Qubit Transformation and Domain Folding

 $z_i \to \cos \theta_i$ $x_i \to \cos \varphi_i \sin \theta_i$ $y_i \to \sin \varphi_i \sin \theta_i$

Solution on Quantum Annealer

PES Curves Solved on Quantum Annealer

Benefit of the use of the annealer

We have demonstrated industrial relevant size simulations on quantum hardware