

Markowitz Portfolio Optimization with a Quantum Annealer

Erica Grant, Travis Humble Oak Ridge National Laboratory University of Tennessee

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Markowitz Portfolio Selection

Goals:

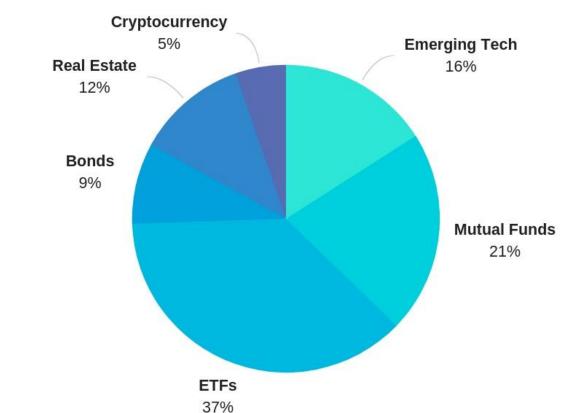
- Maximize returns
- Minimize risk
- Stay within budget

Output:

• Binary list of investments: the portfolio

Inputs:

- Historical price data
- Budget
- Risk tolerance



Budget: \$200		Risk Tolerance: Low			
Investment	Price	Expected Return	1= buy 0 = pass		
Apple	\$223	- \$0.20	0		
FitBit	\$5.90	+ \$0.10	1		

Application to Cryptocurrency

Many investors are including cryptocurrency as part of their portfolios.

- A digital currency designed as a medium of exchange
- Uses cryptography and blockchain to verify and secure each transaction
- Many treat it as an investment
- Volatile: **pro** \rightarrow potential for high returns

con \rightarrow potential for significant losses

Application to Cryptocurrency

- Cryptocurrencies can be divided into any desired fraction based on the budget.
- Normalize purchase price to the budget.
- Use Binary Fractional series:

$$= \frac{1}{2^{0}}, \frac{1}{2^{1}}, \frac{1}{2^{2}}, \dots, \frac{1}{2^{n}}$$

National Laboratory

Budget = \$200	Bitcoin			
	100%	50%	25%	12.5%
06-16-2018	97.44	48.72	24.36	12.18
06-17-2018	107.40	53.50	26.75	13.37
06-18-2018	94.71	47.36	23.67	11.84
06-19-2018	101.79	50.89	25.45	12.73
2.4.3				
		(÷., .	•	•
			· · ·	
	2.4	- 242		•
	343	•		•
510		200	•	
Today	200	100	50	25

Special thanks to **Benjamin Stump** for the binary fractional series idea

$$\min_{x} f(x)$$

$$f(x) = -\theta_1 \sum_i x_i r_{ii} x_i + \theta_2 \sum_i (x_i p_i x_i - b)^2 + \theta_3 \sum_{i,j} x_i cov(p_i, p_j) x_j$$

$$s.t. \\ \theta_1 + \theta_2 + \theta_3 = 1$$

$$x_i = 1 \rightarrow buy$$
 $x_i = 0 \rightarrow don't buy$

- b = budget, $p_i = asset price$, $r_i = asset's expected return$, $x_i \in \{0, 1\}$
- Weights: $\theta_1 = expected returns$, $\theta_2 = budget constraint$, $\theta_3 = diversification$

$$\min_{x} f(x)$$
Expected Returns
$$f(x) = -\theta_1 \sum_{i} x_i r_{ii} x_i + \theta_2 \sum_{i} (x_i p_i x_i - b)^2 + \theta_3 \sum_{i,j} x_i cov(p_i, p_j) x_j$$

$$\theta_1 + \theta_2 + \theta_3 = 1$$

$$x_i = 1 \rightarrow buy$$
 $x_i = 0 \rightarrow don't buy$

- b = budget, $p_i = asset price$, $r_i = asset's expected return$, $x_i \in \{0, 1\}$
- Weights: $\theta_1 = expected returns$, $\theta_2 = budget constraint$, $\theta_3 = diversification$

$$min_{x} f(x)$$
Budget Penalty
$$f(x) = -\theta_{1} \sum_{i} x_{i} r_{ii} x_{i} + \theta_{2} \sum_{i} (x_{i} p_{i} x_{i} - b)^{2} + \theta_{3} \sum_{i,j} x_{i} cov(p_{i}, p_{j}) x_{j}$$

$$g_{1} + \theta_{2} + \theta_{3} = 1$$

$$x_i = 1 \rightarrow buy$$
 $x_i = 0 \rightarrow don't buy$

- b = budget, $p_i = asset price$, $r_i = asset's expected return$, $x_i \in \{0, 1\}$
- Weights: $\theta_1 = expected returns$, $\theta_2 = budget constraint$, $\theta_3 = diversification$

$$\begin{aligned} \min_{x} f(x) &= -\theta_{1} \sum_{i} x_{i} r_{ii} x_{i} + \theta_{2} \sum_{i} (x_{i} p_{i} x_{i} - b)^{2} + \underbrace{\theta_{3} \sum_{i,j} x_{i} cov(p_{i}, p_{j}) x_{j}}_{i,j} \\ &= \theta_{1} + \theta_{2}^{s.t.} \\ &= \theta_{1} + \theta_{2}^{s.t.} \\ &= 1 \end{aligned}$$
$$\begin{aligned} &= \mathbf{x}_{i} = \mathbf{1} \rightarrow \mathbf{buy} \qquad \mathbf{x}_{i} = \mathbf{0} \rightarrow \mathbf{don't} \mathbf{buy} \\ \bullet &= \mathbf{budget}, \ p_{i} = asset \ price, \ r_{i} = asset's \ expected \ return \\ , \quad x_{i} \in \{0, 1\} \end{aligned}$$

• Weights: $\theta_1 = expected \ returns$, $\theta_2 = budget \ constraint$, $\theta_3 = diversification$

QUBO:
$$x \in \{0, 1\}$$

$$f(x) = -\theta_1 \sum_i x_i r_{ii} x_i + \theta_2 \sum_i (x_i p_i x_i - b)^2 + \theta_3 \sum_{i,j} x_i cov(p_i, p_j) x_j$$

$$f(x) = Q_{i,j} x_i x_j + q_i x_i$$

$$q_i = Q_{ii} \text{ and } Q_{i,j} = Q_{i,j} (i \neq j)$$

$$\downarrow$$
Ising: $y \in \{-1, 1\}$

$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

$$\gamma = \frac{1}{4} \sum_{i,j} Q_{i,j} + \frac{1}{2} \sum_i q_i$$

$$\hat{H} = -\sum_{i,j} J_{i,j} \hat{z}_i \hat{z}_j - \sum_i h_i \hat{z}_i + \gamma$$

QUBO:
$$x \in \{0, 1\}$$

$$f(x) = -\theta_1 \sum_i x_i r_{ii} x_i + \theta_2 \sum_i (x_i p_i x_i - b)^2 + \theta_3 \sum_{i,j} x_i cov(p_i, p_j) x_j$$

$$f(x) = Q_{i,j}^2 x_i x_j + q_i x_i$$

$$q_i = Q_{ii} \text{ and } Q_{i,j}^2 = Q_{i,j} (i \neq j)$$

$$\downarrow$$
Ising: $y \in \{-1, 1\}$

$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

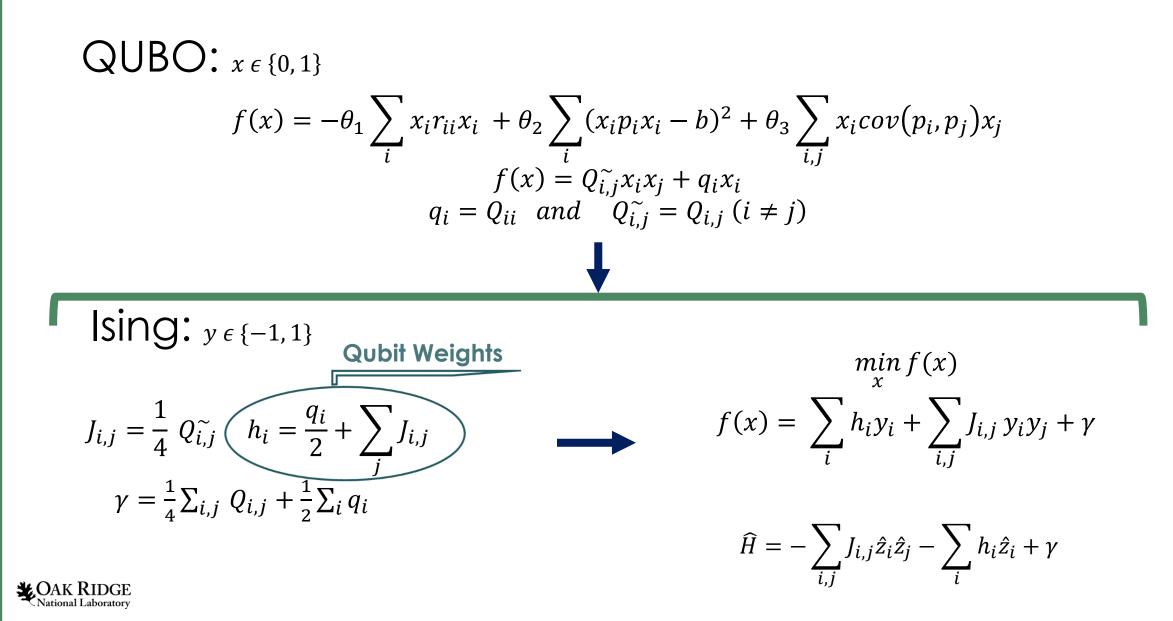
$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

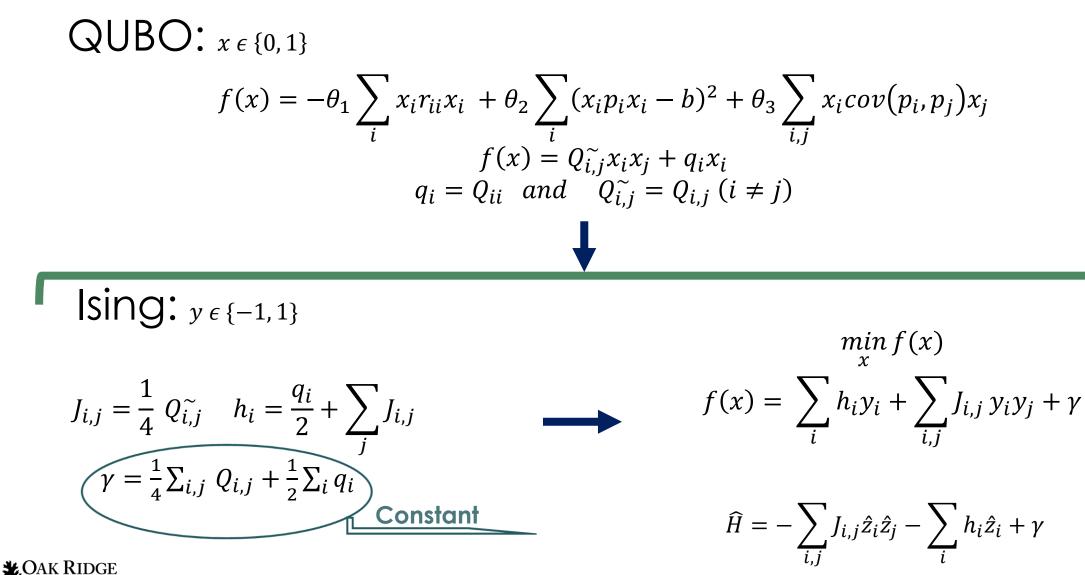
$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

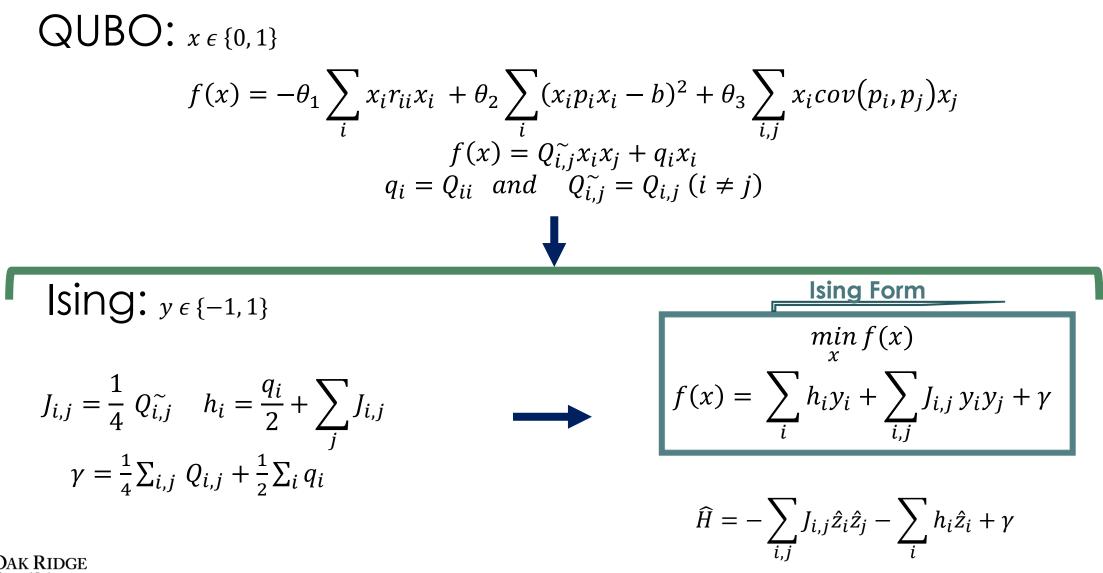
$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$

$$f(x) = \sum_i h_i y_i + \sum_{i,j} J_{i,j} y_i y_j + \gamma$$





National Laboratory



QUBO:
$$x \in \{0, 1\}$$

$$f(x) = -\theta_{1} \sum_{i} x_{i}r_{ii}x_{i} + \theta_{2} \sum_{i} (x_{i}p_{i}x_{i} - b)^{2} + \theta_{3} \sum_{i,j} x_{i}cov(p_{i}, p_{j})x_{j}$$

$$f(x) = Q_{i,j}x_{i}x_{j} + q_{i}x_{i}$$

$$q_{i} = Q_{ii} \text{ and } Q_{i,j}^{*} = Q_{i,j}(i \neq j)$$

$$\downarrow$$
Ising: $y \in \{-1, 1\}$

$$f(x) = \sum_{i} h_{i}y_{i} + \sum_{i,j} J_{i,j}y_{i}y_{j} + \gamma$$

$$q = \frac{1}{4} \sum_{i,j} Q_{i,j} + \frac{1}{2} \sum_{i} q_{i}$$

$$f(x) = \sum_{i} h_{i}y_{i} + \sum_{i,j} J_{i,j}y_{i}y_{j} + \gamma$$

$$Quantum Ising$$

$$\widehat{H} = -\sum_{i,j} J_{i,j}\hat{z}_{i}\hat{z}_{j} - \sum_{i} h_{i}\hat{z}_{i} + \gamma$$

CAK RIDGE National Laboratory

Solving on D-Wave 2000Q

D-Wave 2000Q:

Outputs:

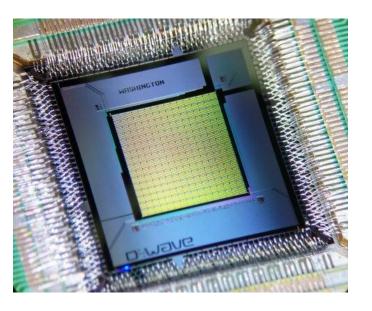
- 2048 qubits
- Max job length of 3s
- Anneal time: $5\mu s$, $100\mu s$, and $250\mu s$

Parameters:

- $\theta_1, \theta_2, \theta_3$
- Number of assets
- Historical Price Data

Portfolio:

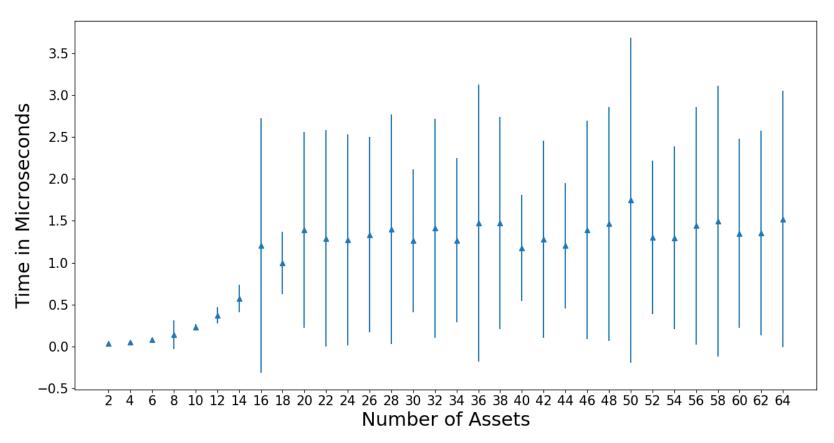
- $S \quad [-1, 1, 1, 1, -1, -1...] \rightarrow$
 - [0, 1, 1, 1, 0, 0...]
 - Portfolio Value: the cost of the portfolio



Embedding

• Embedding Time:

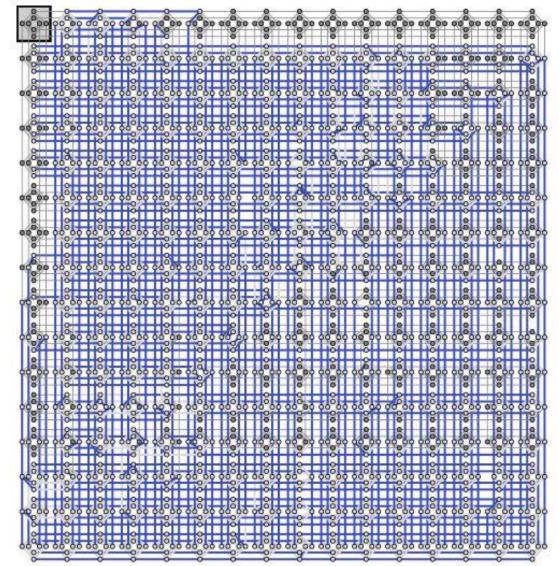
- Average over 100 problems
- Up to 64 assets



Embedding Times on D-Wave 2000Q

Embedding

• Fully connected graph, 65 assets



Problem Setup

Generate price data:

- 100 points in time $\{p_1, p_2, \dots, p_{100}\}$
- 1,000 problems
- 20 assets
- Random
 Variability of ±25%
 between historical
 price points

D-Wave:

18

– Number of runs =
 10,000

	Crypto 1	Crypto 2	Crypto 3	Crypto 4	Crypto 5
Day 1:	140.4786	231.4524	847.4452	276.9872	785.5279
Day 2:	166.8358	277.8494	565.0754	188.9914	723.1995
Day 3:	161.4003	346.2087	885.931	222.8781	769.9646
Day4:	121.0639	216.6541	837.3057	239.5639	763.3887
Day5:	120.9109	350.5204	858.1819	259.3726	918.4838
Day 6:	147.8595	265.5617	721.3764	258.4228	1042.285
Day 7:	146.3595	240.6285	558.813	173.5751	887.7815

Brute Force Solver:

Searches exact solution (global minimum)

Problem Setup

Generate price data:

- 100 points in time $\{p_1, p_2, \dots, p_{100}\}$
- 1,000 problems
- 20 assets
- Random
 Variability of ±25%
 between historical
 price points

D-Wave:

CAK RIDGE

19

Number of runs = 10,000

Budget: \$200

	Crypto 1	Crypto 2	Crypto 3	Crypto 4	Crypto 5
Day 1:	140.4786	231.4524	847.4452	276.9872	785.5279
Day 2:	166.8358	277.8494	565.0754	188.9914	723.1995
Day 3:	161.4003	346.2087	885.931	222.8781	769.9646
Day4:	121.0639	216.6541	837.3057	239.5639	763.3887
Day5:	120.9109	350.5204	858.1819	259.3726	918.4838
Day 6:	147.8595	265.5617	721.3764	258.4228	1042.285
Price:	146.3595	240.6285	558.813	173.5751	887.7815

Set last day to purchasing price

Brute Force Solver:

 Searches exact solution (global minimum)

Problem Setup

Generate price data:

- 100 points in time $\{p_1, p_2, \dots, p_{100}\}$
- 1,000 problems
- 20 assets
- Random
 Variability of ±25%
 between historical
 price points

D-Wave:

20

– Number of runs =
 10,000

Budget: \$200

	Crypto 1	Crypto 2	Crypto 3	Crypto 4	Crypto 5
Day 1:	194.1191	190.8239	488.6322	303.4121	97.7464
Day 2:	220.4763	237.2209	206.2624	215.4163	35.418
Day 3:	215.0408	305.5802	527.118	249.303	82.1831
Day4:	174.7044	176.0256	478.4927	265.9888	75.6072
Day5:	174.5514	309.8919	499.3689	285.7975	230.7023
Day 6:	201.5	224.9332	362.5634	284.8477	354.5035
Price:	200	200	200	200	200

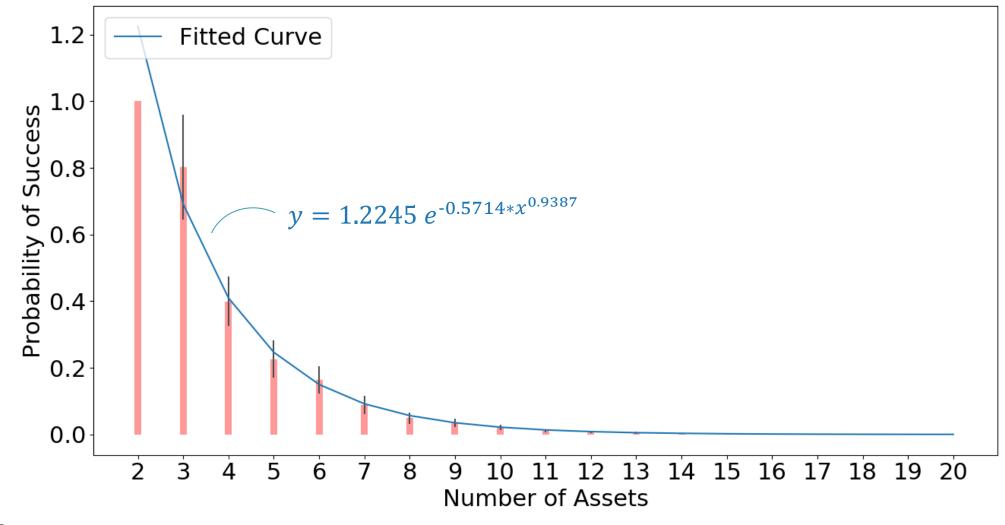
Normalize prices to budget

Brute Force Solver:

Searches exact solution (global minimum)

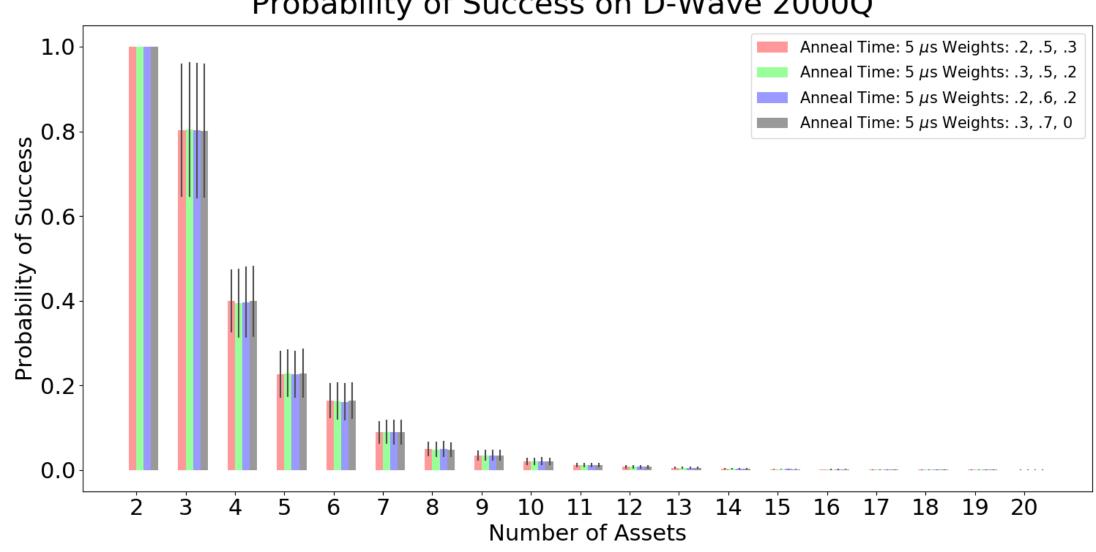
Best Fit for Probability of Success

Probability of Success on D-Wave 2000Q



CAK RIDGE

Probability of Success: Variation in Weights



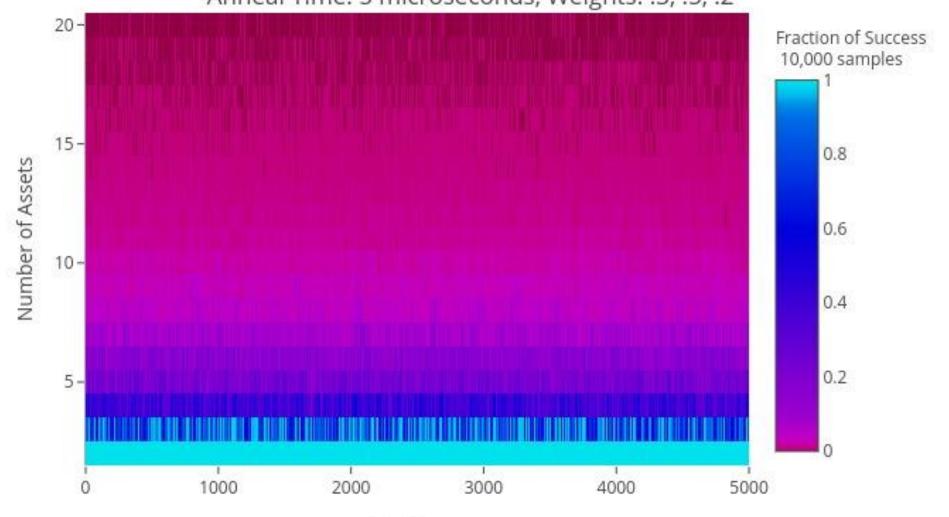
Probability of Success on D-Wave 2000Q

CAK RIDGE National Laboratory 22

Probability of Success

Frequency of Success on D-Wave 2000Q

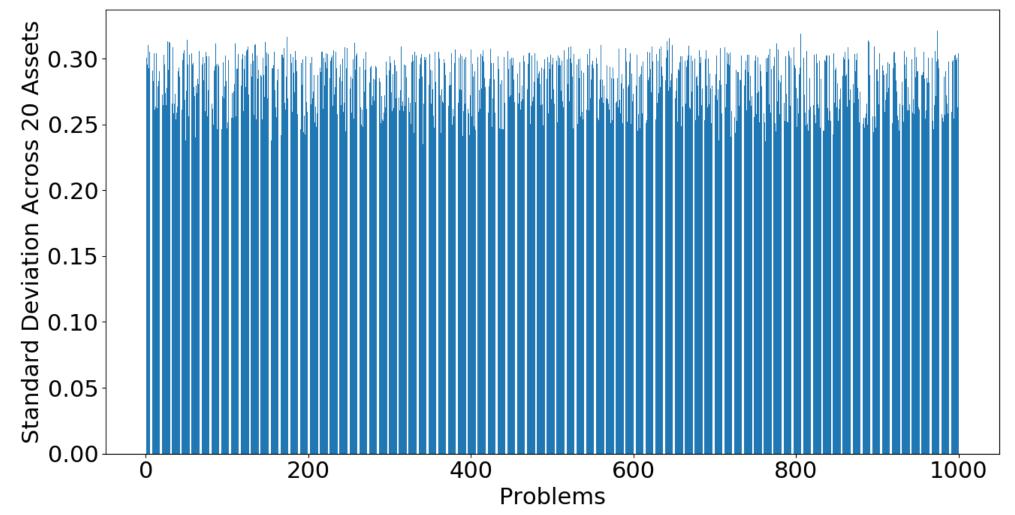
Finding the Optimal Solution for 1,000 Problems Anneal Time: 5 microseconds, Weights: .3, .5, .2



Problems

Standard Deviation Across Problems

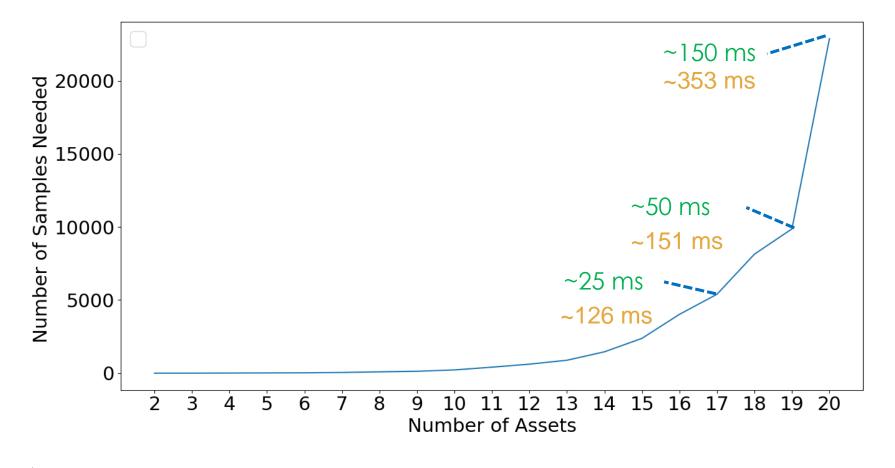
Standard Deviation Across 20 Assets on D-Wave 2000Q



Number of Samples

25

Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q

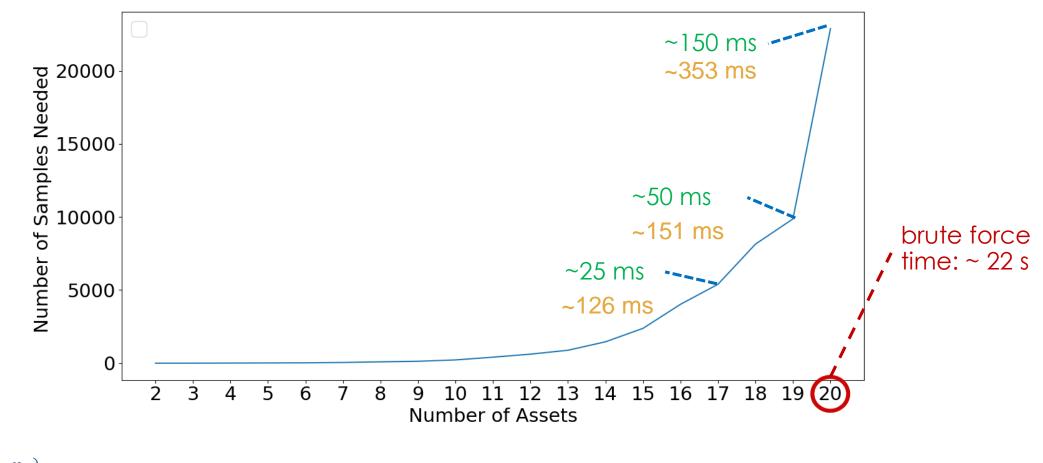


 $n \ge \frac{\log(1-p_a)}{\log(1-p_s)}$ where *n* is the number of samples, p_a is the desired accuracy, and p_s is probability of success **CAK RIDGE** Total D-Wave time is calculated from anneal time + access time + post-processing overhead for each 10,000 sample job.

Number of Samples

26

Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q



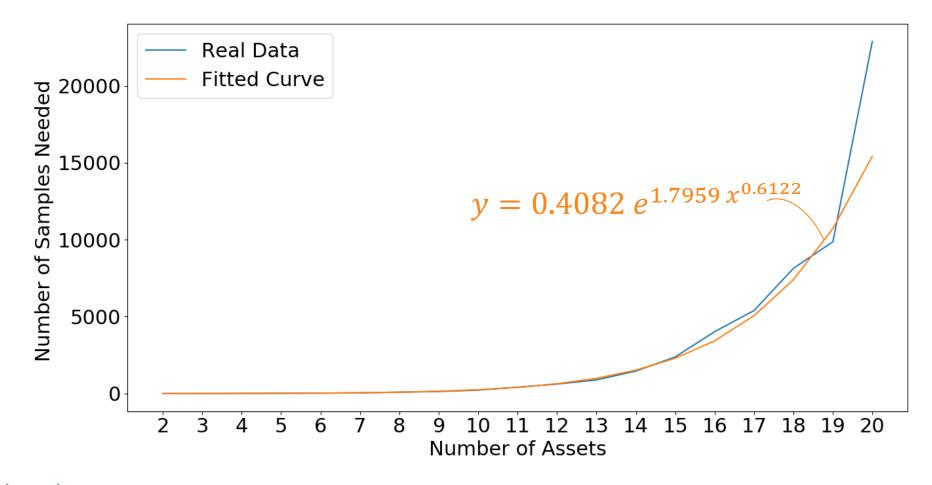
 $n \ge \frac{\log(1-p_a)}{\log(1-p_s)}$ where *n* is the number of samples, p_a is the desired accuracy, and p_s is probability of success. **CAK RIDGE** Total D-Wave time is calculated from anneal time + access time + post-processing overhead for each 10,000 sample job.

Number of Samples

CAK RIDGE National Laboratory

27

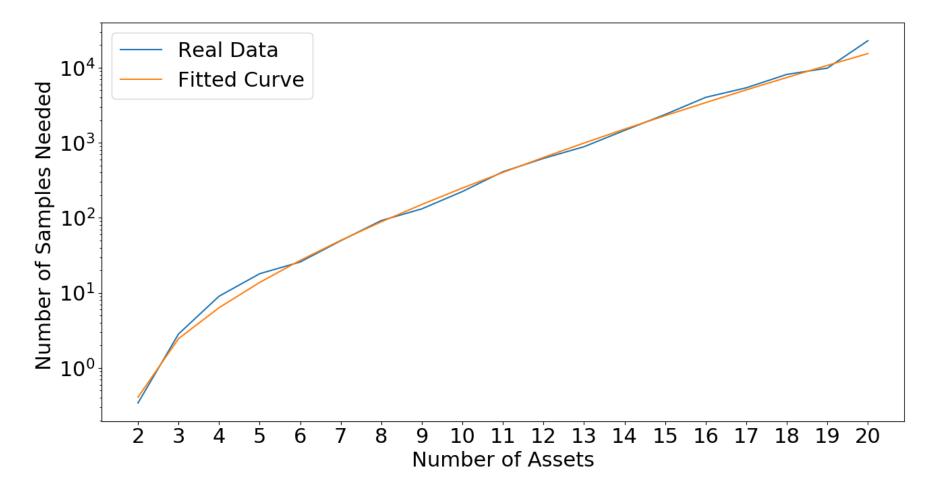
Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q



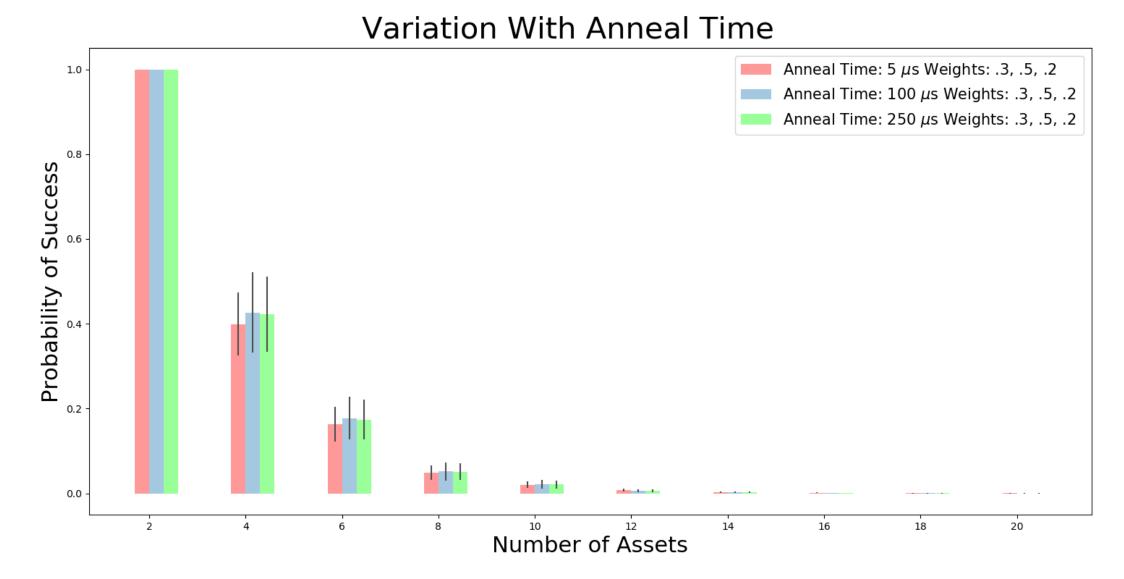
 $n \ge \frac{\log(1-p_a)}{\log(1-p_s)}$ where *n* is the number of samples, p_a is the desired accuracy, and p_s is probability of success

Number of Samples: Fitted to Log Scale

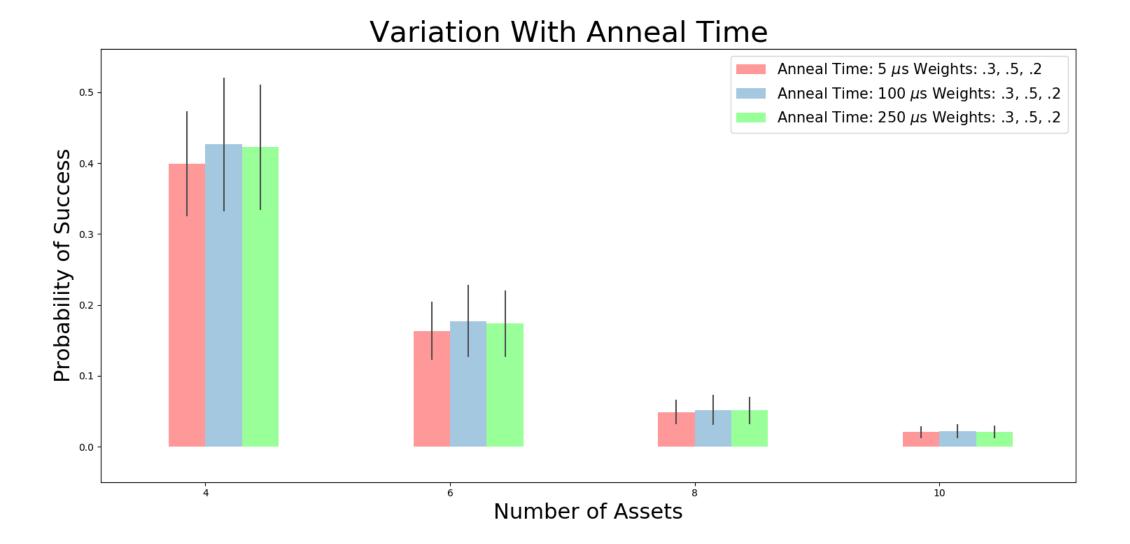
Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q



Probability of Success: Variation in Anneal Time

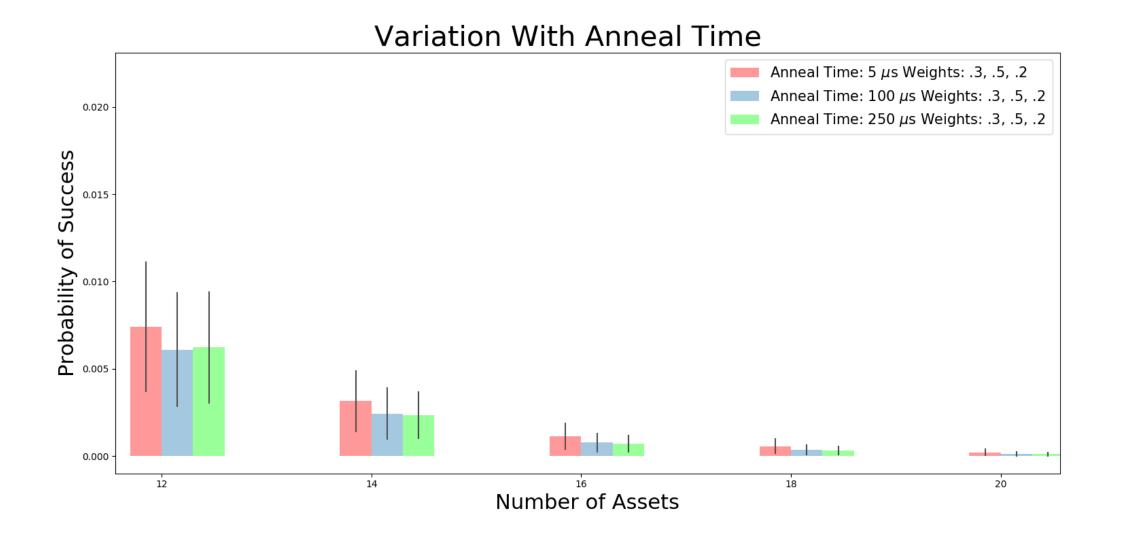


Probability of Success: Variation in Anneal Time



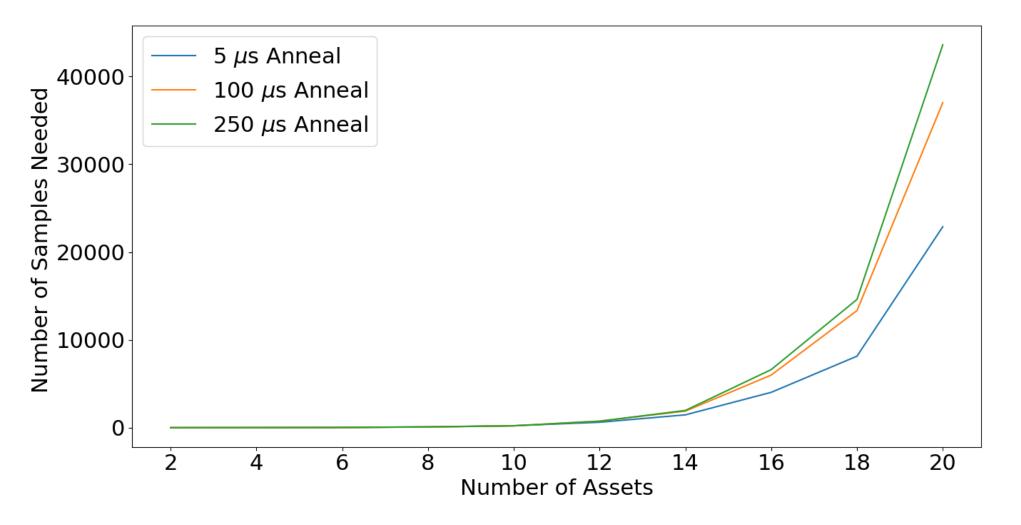
CAK RIDGE National Laboratory

Probability of Success: Variation in Anneal Time



Number of Samples: Variation in Anneal Time

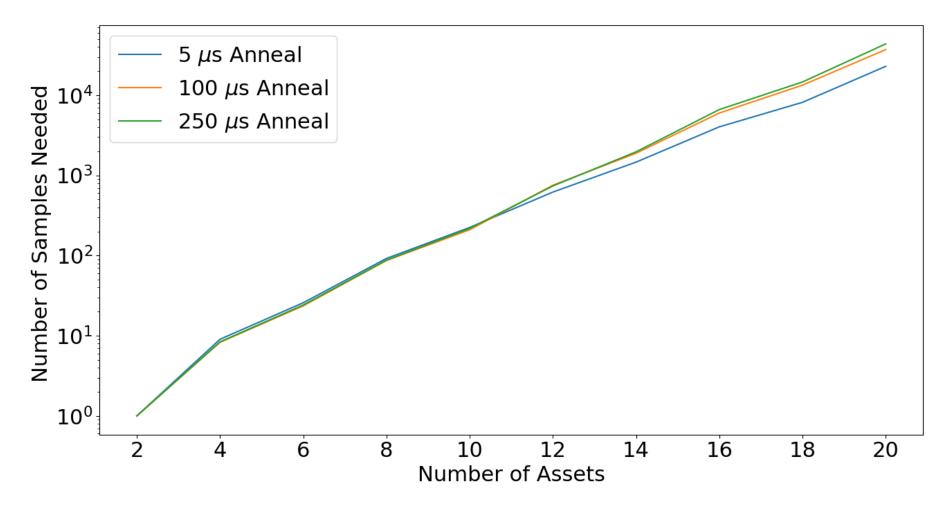
Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q



32 **CAK RIDGE** National Laboratory

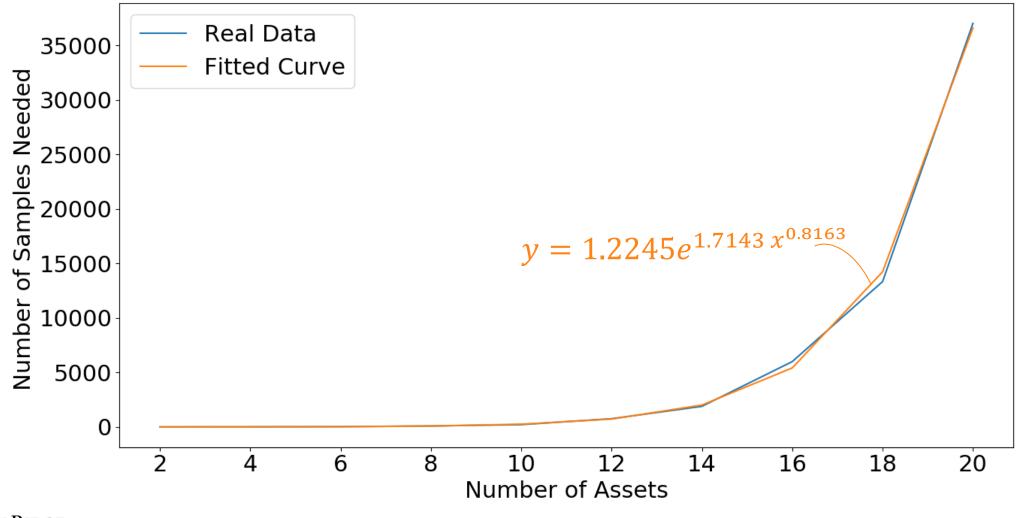
Number of Samples: Variation in Anneal Time

Number of Samples Needed for 99% Certainty of Success D-Wave 2000Q



Number of Samples: 100µs Anneal

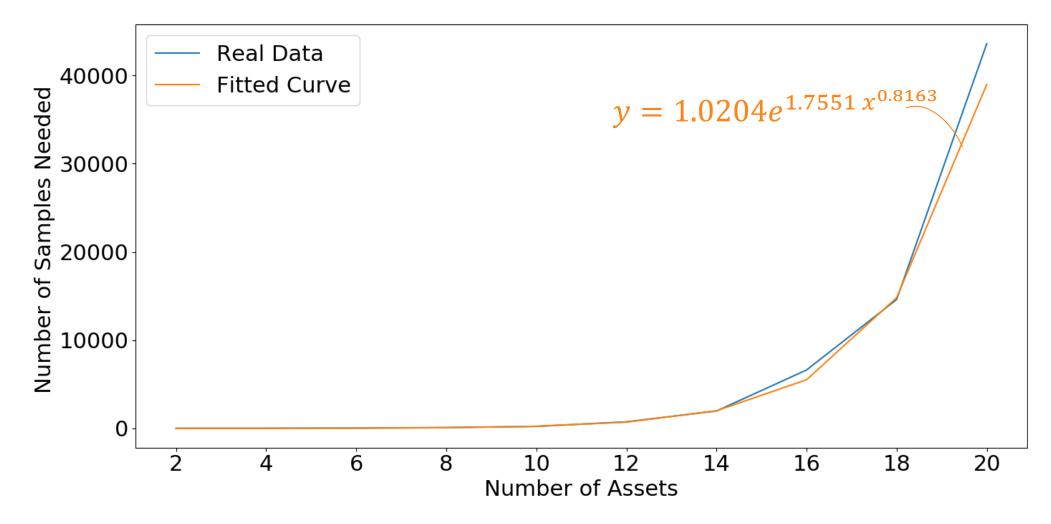
Number of Samples for 100 μ s Anneal



34 **CAK RIDGE** National Laboratory

Number of Samples: 250µs Anneal

Number of Samples for 250 μ s Anneal



CAK RIDGE

Conclusions

- Lengthening the anneal time had small effects on the probability of success. For large problem size, small annealing time had a higher average while smaller problems yielded a higher average with longer anneal times.
- The number of samples needed to approach a 99% chance of finding the correct solution increased sub-exponentially with problem size through 20 assets.
- The weights on expected return, covariance, and budget penalty terms appear to have little to no effect on the probability of success.
- The time it takes to find an embedding on the D-Wave 2000Q increases sharply around 16 assets.

Questions

University of Tennessee, Knoxville Oak Ridge National Laboratory Quantum Computing Institute

In collaboration with Khalifa University Nada Elsokkary, Faisal Khan

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

