Flight Gate Assignment with a Quantum Annealer

nowledge for Tomorrow

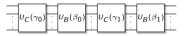
Elisabeth Lobe, Tobias Stollenwerk

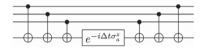
High Performance Computing Simulation and Software Technology DLR German Aerospace Center

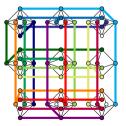
26th March 2019

Algorithmic Quantum Computing Research at DLR

- Quantum Optimization Algorithms
- → Quantum Compiling
- → Embedding strategies for Quantum Annealing
 - Complete graph in broken Chimera
 - → Weight distribution problem







Aerospace Applications at DLR

for Quantum Annealing

- → Air Traffic Management
- → Satellite Telemetry Verification
- → Earth Observation Mission Planning
- Flight Gate Assignment

for Gate-Based Quantum Computing

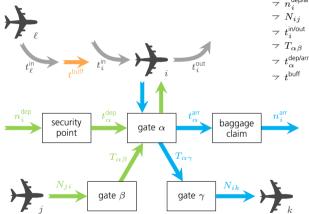
- ¬ QAOA for scheduling problems
- → HHL for Radar Cross Section
- → Quantum Simulation for Battery Research

Flight Gate Assignment

A day at Frankfurt Airport

- → about 1300 aircraft movements (arrival and departure)
- → more than 90% are passenger flights
- → more than 170000 passengers
- → about 60% transfer passengers
- → 278 gates

Passenger Flows



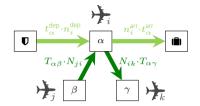
- \neg F, G sets of flights and gates
- $\bigtriangledown n_i^{ ext{dep/arr}}$ passengers which depart/ arrive with flight i
- $abla \,\,\, N_{ij}$ transfer passengers from flight i to j
- $\tau t_i^{\text{in/out}}$ arrival/departure time of flight i
- $T_{lphaeta}$ average time to get from gate lpha to eta
- $t^{
 m dep/arr}_{lpha}~~$ average time to arrive at/ leave from gate lpha
 - ^{uff} buffer time between two flights at the same gate

Which flight should be assigned to which gate, such that the total transit time of the passengers is minimal?

 $A:F\to G$

FGA Binary Program

Variables
$$x \in \{0,1\}^{F \times G}$$
 with
 $x_{i\alpha} = \begin{cases} 1, & \text{if flight } i \text{ takes gate } \alpha, \\ 0, & \text{otherwise} \end{cases}$



Minimizing the total transfer time with objective function

$$\begin{split} T(x) &= T_{\rm arr}(x) &+ T_{\rm dep}(x) &+ T_{\rm transfer}(x) \\ &= \underbrace{\sum_{i\alpha} n_i^{\rm arr} t_{\alpha}^{\rm arr} x_{i\alpha} + \sum_{i\alpha} n_i^{\rm dep} t_{\alpha}^{\rm dep} x_{i\alpha}}_{\rm linear} &+ \underbrace{\sum_{ij\alpha\beta} N_{ij} T_{\alpha\beta} x_{i\alpha} x_{j\beta}}_{\rm quadratic} \end{split}$$

\Rightarrow Quadratic Assignment Problem

- → fundamental problem in combinatorial optimization, NP-hard
- \neg seems to exploit possible advantages of the D-Wave machine

Constraints and Penalty Terms

- 1. One gate per flight $\sum_{\alpha} x_{i\alpha} = 1$ $\forall i \in F$
- 2. Different gates if standing times of two flights overlap forbidden pairs

$$P = \left\{ (i,j) \in F^2 : t_i^{\text{in}} < t_j^{\text{out}} + t^{\text{buff}} \right\}$$
$$x_{i\alpha} + x_{j\alpha} \le 1 \iff x_{i\alpha} \cdot x_{j\alpha} = 0 \qquad \forall (i,j) \in P \ \forall \alpha \in G$$

$$\Rightarrow \text{ Penalty terms } C_{\text{one}}(x) = \sum_{i} \left(\sum_{\alpha} x_{i\alpha} - 1 \right)^{2},$$

$$C_{\text{not}}(x) = \sum_{\alpha} \sum_{(i,j) \in P} x_{i\alpha} x_{j\alpha} \quad \text{where } C_{\text{one/not}} \begin{cases} > 0, & \text{if constraint is violated} \\ = 0, & \text{if constraint is fulfilled} \end{cases}$$

QUBO with Penalty Weights

$$Q(x) = T(x) + \lambda_{\rm one} C_{\rm one}(x) + \lambda_{\rm not} C_{\rm not}(x)$$

Need to ensure that a solution always fulfills constraints, hence $\Delta C > \Delta T$

- \Rightarrow Comparing coefficients in worst cases for
 - → not assigning a flight to any gate

$$\lambda_{\text{one}} > \max_{i,\alpha} \left(n_i^{\text{dep}} t_\alpha^{\text{dep}} + n_i^{\text{arr}} t_\alpha^{\text{arr}} + \max_\beta T_{\alpha\beta} \sum_j N_{ij} \right)$$

→ assigning a pair of forbidden flights to the same gate

$$\lambda_{\text{not}} > \max_{i,\alpha,\gamma} \left(n_i^{\text{dep}} t_\alpha^{\text{dep}} - n_i^{\text{dep}} t_\gamma^{\text{dep}} + n_i^{\text{arr}} t_\alpha^{\text{arr}} - n_i^{\text{arr}} t_\gamma^{\text{arr}} + \max_\beta \left(T_{\alpha\beta} - T_{\gamma\beta} \right) \sum_j N_{ij} \right)$$

 \Rightarrow Refinement by bisection of weights yielding valid or invalid solutions

Airport Data

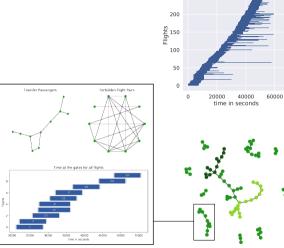
- \neg Flight schedule for one day from a mid-sized European airport
- → Passenger flow from agent-based simulation of Martin Jung
- → Extracted total instance: 293 flights and 97 gates
- \Rightarrow Over 28000 binary variables with about 400 Mio. couplings

Instance Preprocessing

- → Splitting too long on-block times
- \checkmark Reducing to only flights with transfers
- → Extracting connected subgraphs
- Further slicing of largest subgraph randomly

 \Rightarrow 163 instances:

- \neg 3 to 16 flights
- → 2 to 16 gates



250

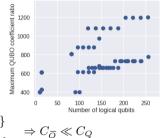
Bin Packing

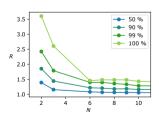
- \neg Maximum coefficient ratio of QUBO $C_Q = \frac{\max_{ij} |Q_{ij}|}{\min_{ij} |Q_{ij}|}$
- Reducing maximum coefficient ratio to overcome precision issues

$$\begin{array}{l} T_{\alpha\beta}, t_{\alpha}^{\text{arl}}, t_{\alpha}^{\text{dep}} \rightarrow \{0, 1, ..., \boldsymbol{T}\} \text{ with } \boldsymbol{T} \in \{2, 3, 6, 10\} \\ N_{ij}, n_i^{\text{arr}}, n_i^{\text{dep}} \rightarrow \{0, 1, ..., \boldsymbol{N}\} \text{ with } \boldsymbol{N} \in \{2, 3, 6, 10\} \end{array}$$

$$R = \frac{Q(\arg\min_x \overline{Q}(x))}{\min_x Q(x)}$$

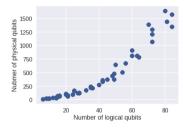
 \Rightarrow Little effect on solution quality

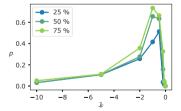




Annealing Setup

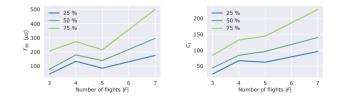
- Embedding
 - → Quadratic overhead
 - → Up to 84 logical qubits
 - $(\#Variables = \#Flights \cdot \#Gates)$
- \neg Intra-logical coupling ($J_{\rm F}$)
 - \neg Influences success probability p
 - → Best option by scanning: -1 in units of largest coefficient
- → (Standard) Run parameters
 - \neg Annealing time 20 μs with 1000 runs
 - → Majority voting

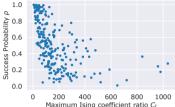




Annealing Results

- \neg QUBO to Ising transformation
 - → increases maximum coefficient ratio significantly
 - \Rightarrow large Ising coefficients suppress success probability
- \neg Time to solution with 99% certainty $T_{99} = \log_{1-p}(1-0.99)T_{\text{anneal}}$
 - \neg grows with problem size \rightarrow because of larger coefficients?
 - → due to small problem sizes asymptotic behaviour unclear





Summary

- ✓ Flight gate assignment is amenable to QA
- → Precision issues due to large coefficients
- → Mitigate limited precision by bin packing
- → Open questions:
 - → How to recombine partial solutions?
 - → How would larger instance perform?
 - → Are these instances hard for classical solvers?

Questions?

Elisabeth Lobe

High Performance Computing Simulation and Software Technology DLR German Aerospace Center elisabeth.lobe@dlr.de

Related Article:

Flight Gate Assignment with a Quantum Annealer T. Stollenwerk, E. Lobe and M. Jung, QTOP, Springer, 2019

nowledge for Tomorrow

#