

Optimizing Quantum Annealing Performance via Quantum Control

Qubits 2018: D-Wave Users Conference

Gregory Quiroz The Johns Hopkins University Applied Physics Laboratory

Overview

Problem

Develop a method to optimize control schedules for *general* adiabatic quantum computation (AQC) algorithms that is

- Scalable/Efficient: Convergence rates that do not depend on system size
- Practical: does not require knowledge of energy spectrum or computational solution
- Robust: robust to system uncertainty, e.g., noise

Overview

Problem

Develop a method to optimize control schedules for *general* adiabatic quantum computation (AQC) algorithms that is

- Scalable/Efficient: Convergence rates that do not depend on system size
- Practical: does not require knowledge of energy spectrum or computational solution
- Robust: robust to system uncertainty, e.g., noise

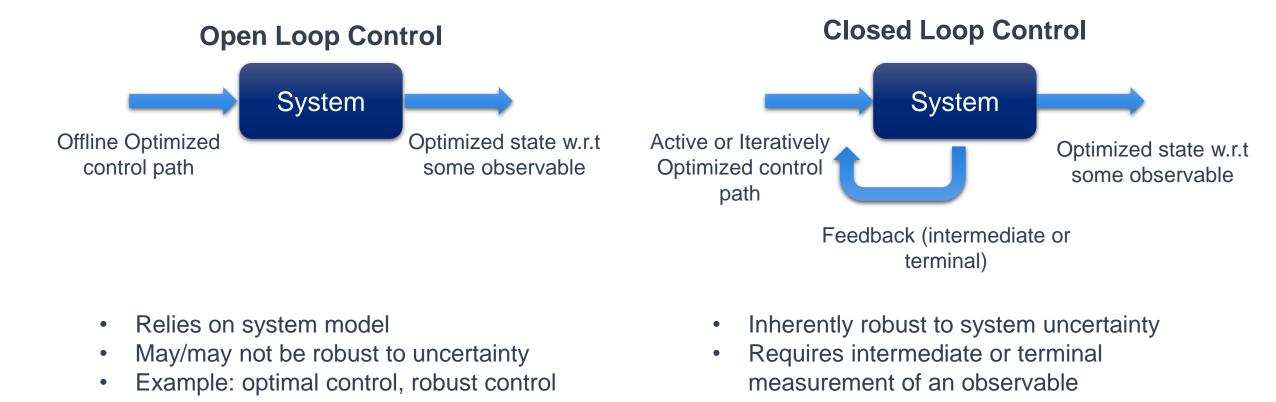
Motivation

- Optimized control can facilitate computational speedup
 - Time-optimal controls for Grover's search algorithm (Rolad, Cerf PRA 2002, Rezakhani et al. PRL 2009)
 - Boundary cancellation methods (Rezakhani et. al. PRA 2011)
- Many techniques are not practical
 - Require knowledge of the instantaneous energy spectrum (Zeng et al JPA 2016)
 - Require knowledge of the computational solution (Brif at. Al NJP 2014)
 - Not robust to system uncertainty (Roland, Cerf PRA 2002, Rezakhani et al. PRL 2009)

Quantum Control

Objective

Perform particular quantum operation with high fidelity, potentially while simultaneously mitigating the effects of unwanted environment interactions



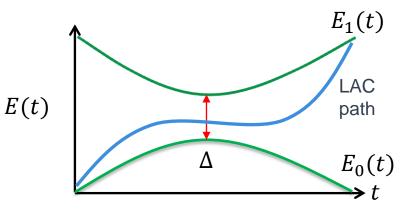
Quantum Control for Adiabatic Quantum Computation

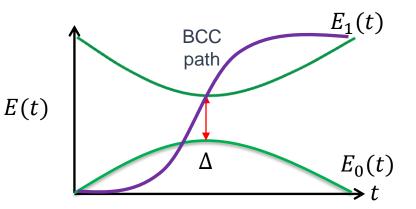
Local adiabatic control (LAC)

- Relies on "instantaneous adiabatic theorem"
 - satisfy the adiabatic condition at each instance in time
- Minimizes the time needed to reach the adiabatic regime based on the rate of change of the evolution

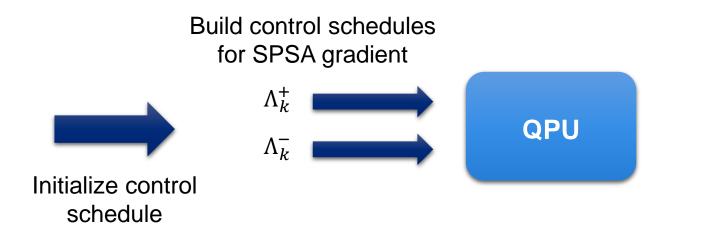
Boundary cancellation control (BCC)

- Relies on "final time adiabatic theorem"
 - Minimizes error in the adiabatic approximation
 - Polynomial error improvement of LAC by setting the first n - 1 derivatives of the Hamiltonian to zero at the boundaries





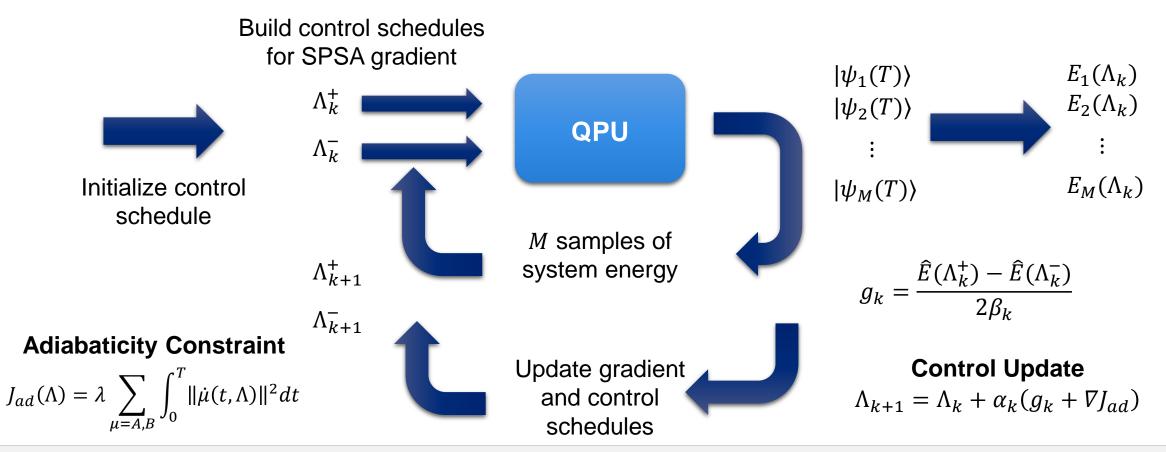
Closed Loop Optimized Adiabatic Quantum Control (CLOAQC)



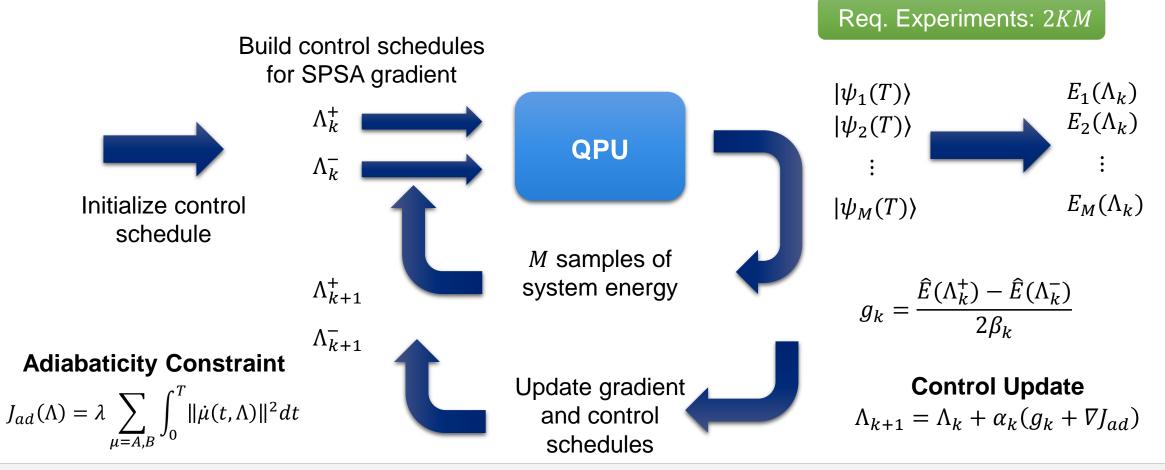
Closed Loop Optimized Adiabatic Quantum Control (CLOAQC)



Closed Loop Optimized Adiabatic Quantum Control (CLOAQC)



Closed Loop Optimized Adiabatic Quantum Control (CLOAQC)



Grover's Search Problem

Hamiltonian 10⁰ -1.566 ± 0.003 (b) (a) -1.566 ± 0.003 $-D_{CLOAQC}$ $H_{ad}(s) = A(s)[I - |+\rangle\langle +|] + B(s)[I - |m\rangle\langle m|]$ 10-1 Controls 10⁻² $A(s) = \sum_{i=0}^{d-1} a_i s^i$, $B(t) = \sum_{i=0}^{d-1} b_i s^i$ M = 10n = 4 $|D_{RC}|$ M = 100n=6M = 1000n=810⁻³ 10⁰ -0.965 ± 0.002 (c) -0.965 ± 0.002 (d) D_{CLOAQC} **Trace Distance** 10-1 $D = \sqrt{1 - |\langle \Phi_0(1) | \psi(1) \rangle|^2}$ 10⁻² M = 10 $|D_{QAB}|$ n = 4M = 100n=6M = 1000n=810⁻³ CLOAQC converges to known 10^{0} 10¹ 10² 10³ 10^{4} 10⁰ 10¹ 10² 10^{3} 10⁴

Iteration k

LAC solutions

Iteration k

APL

Grover's Search Problem

Hamiltonian 10⁰ -1.566 ± 0.003 (a) -1.566 ± 0.003 (b) $\left| D_{RC} - D_{CLOAQC} \right|$ $H_{ad}(s) = A(s)[I - |+\rangle\langle +|] + B(s)[I - |m\rangle\langle m|]$ 10-1 Controls 10⁻² $A(s) = \sum_{i=0}^{d-1} a_i s^i$, $B(t) = \sum_{i=0}^{d-1} b_i s^i$ M = 10n = 4M = 100M = 1000n=6n=810-3 10¹ 100 10^{2} 10³ 10^{4} 10⁰ 10¹ 10^{2} 10³ 10^{4} Iteration k Iteration k **Trace Distance** 1.0 CLOAQC: $x_2(s)$ $D = \sqrt{1 - |\langle \Phi_0(1) | \psi(1) \rangle|^2}$ 0.8 RC: $x_2(s)$ 0.6 0.4 CLOAQC converges to known 0.2 0.0 🛌 0.0 LAC solutions 0.2 0.4 0.6 0.8 1.0

s

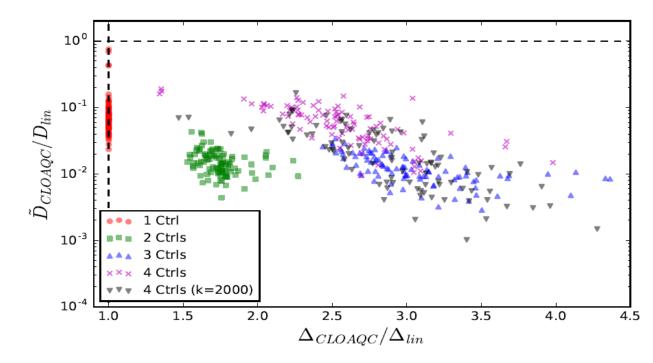
MAX 2-SAT

Problem: Determine maximum number of satisfying assignments for a Boolean formula

$$F[\{x_i\}_{i=1}^{N}] = (x_3 \lor x_1) \land (\neg x_5 \lor x_2) \land \dots \land (x_4 \lor \neg x_3)$$

$$C_1 \qquad C_2 \qquad C_M$$

$$H_P = \sum_{k=1}^{M} H_{C_k}, \qquad H_{C_k} = \left(\frac{1 - v_{x_i}^k \sigma_{x_i}^Z}{2}\right) \left(\frac{1 - v_{x_j}^k \sigma_{x_j}^Z}{2}\right)$$



AQC Hamiltonian

$$H(t) = A_1(t) \sum_{i} \sigma_i^{X} + A_2(t) \sum_{i \neq j} \sigma_i^{X} \sigma_j^{X} + B_1(t) \sum_{i} h_i \sigma_i^{Z} + B_2(t) \sum_{i \neq j} J_{ij} \sigma_i^{Z} \sigma_j^{Z}$$

Increasing control DOF leads to improvements in computational accuracy and enhancements in minimum gap

Robustness to Noise

Grover with unitary control errors

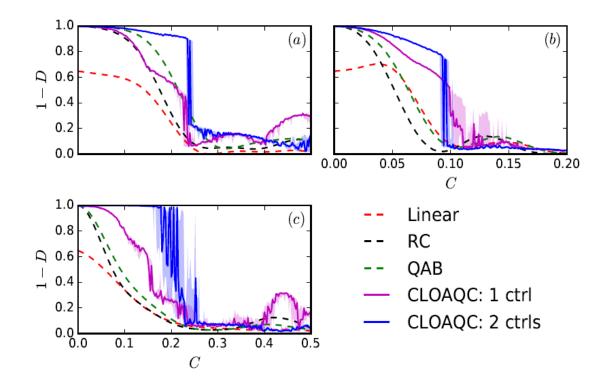
 $H'_{ad}(s) = H_{ad}(s) + H_E(s)$ $H_{ad(s)} = A(s)[I - |+\rangle\langle+|] + B(s)[I - |m\rangle\langle m|]$ $H_E(s) = \Gamma(s)\sum_i \widehat{m}_i \cdot \vec{\sigma}_i$

Error Scenarios

a) $\Gamma(s) = Cs$

b)
$$\Gamma(s) = C \sin(\pi s)$$

c) $\Gamma(s) = \frac{1}{2} \sin(C\pi s)$

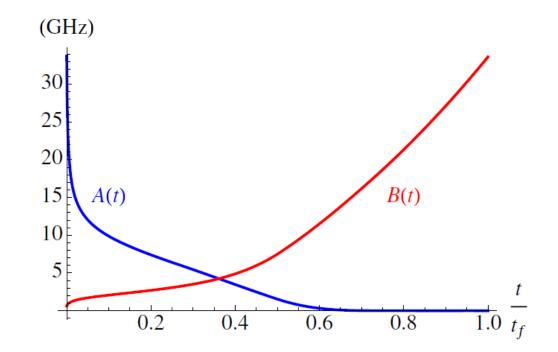


CLOAQC exhibits robustness to sufficiently small and slow-oscillating unitary control errors

Control Capabilities on the D-Wave QPU

2000Q System

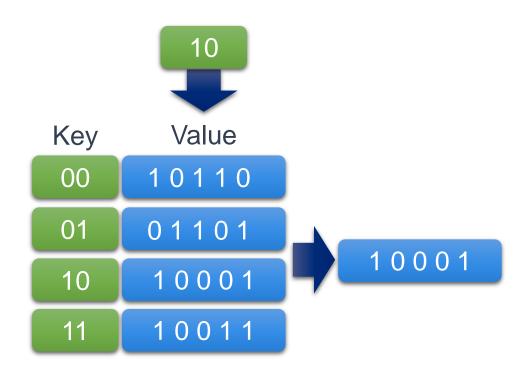
- Allows for some control over annealing path
- Path must be monotonic
- New features
 - Pausing
 - Quenching
- Permits experimental testing of CLOAQC!



Content Addressable Memory Problem

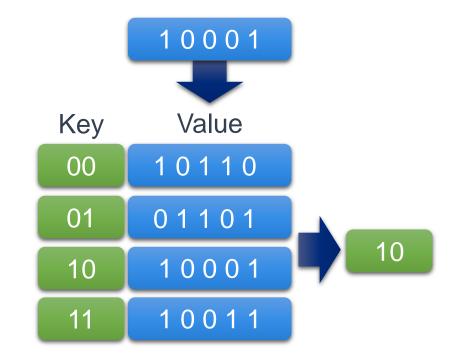
Traditional Memory

- Input is address location of the desired content
- Output is the content of the address



Content Addressable Memory (CAM)

- Input is content of the stored memory
- Output is the location of the desired content



Quantum CAM

Problem Design

Cast CAM problem as an adiabatic quantum optimization problem

Keys:
$$K = [k^{(1)}, k^{(2)}, ..., k^{(m)}]^T$$
 Values: $V = [v^{(1)}, v^{(2)}, ..., v^{(m)}]^T$

Hamiltonian Description

 $H(t,\theta) = A(t)H_X + B(t)H_\theta$

Hebbs Learning Rule

$$W = \begin{pmatrix} 0 & W_B \\ W_B^T & 0 \end{pmatrix} \qquad W_B = \frac{1}{n} K^T V$$

Maximum Classical Learning Capacity: $C(n) = \frac{n}{2}\log(n)$

H. Seddiqi, T. Humble Frontiers in Phys. 2014 Santa et al. PRA 20017 Schrock et al. Entropy 2017

$$H_X = -\sum_{i}^{n} \sigma_i^X$$
$$H_\theta = -\sum_{i,j}^{n} w_{ij} \sigma_i^Z \sigma_j^Z - \sum_{i}^{n} \theta_i v_i^{(0)} \sigma_i^Z$$

QCAM Preliminary Experimental Results

CLOAQC Convergence Scaling

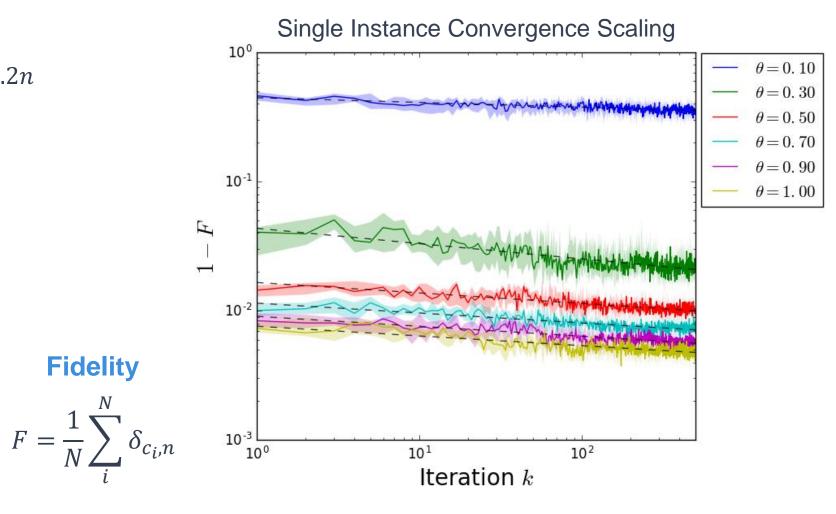
Problem Description

- n = 16 logical qubits
- # encoded memories: m = 0.2n
- 1 μs annealing time
- N =1000 annealing runs
- 20 realizations of CLOAQC
- 500 iterations of CLOAQC

Convergence Scaling

Convergence Rate: $O(k^{\beta})$

θ	β
0.1	-0.0364
0.3	-0.1182
0.5	-0.0808
0.7	-0.0766
0.9	-0.0768
1.0	-0.0752



APL

QCAM Preliminary Experimental Results

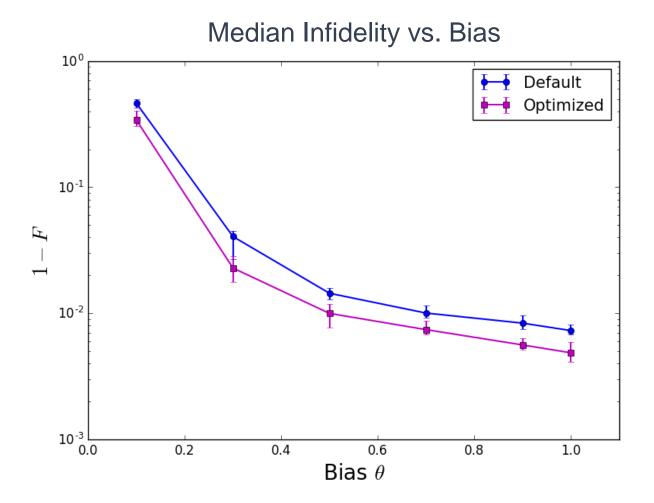
Fidelity vs. Bias

Problem Description

- n = 16 logical qubits
- # encoded memories: m = 0.2n
- 1 μs annealing time
- *N* =1000 annealing runs
- 20 realizations of CLOAQC
- 500 iterations of CLOAQC

Fidelity

$$F = \frac{1}{N} \sum_{i}^{N} \delta_{c_{i},n}$$



QCAM Preliminary Experimental Results

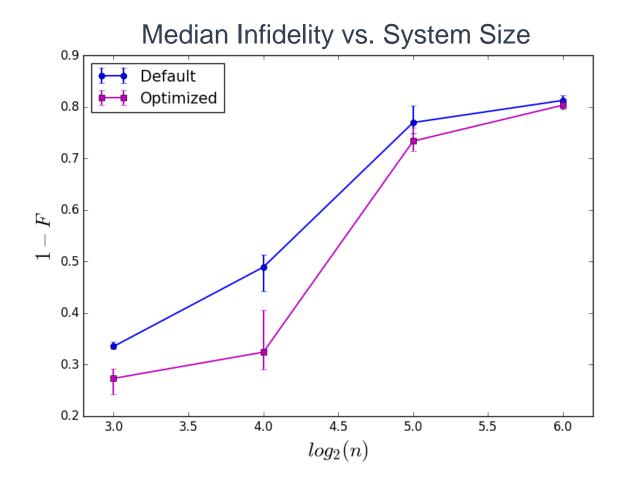
Fidelity vs. Problem Size

Problem Description

- Number of logical qubits n = 8,16,32,64
- Bias $\theta = 0.1$
- # stored memories: m = 0.2n
- 1 μs annealing time
- N =1000 annealing runs
- 20 realizations of CLOAQC
- 500 iterations of CLOAQC

Fidelity

$$F = \frac{1}{N} \sum_{i}^{N} \delta_{c_{i},n}$$



Conclusions

- CLOAQC can be used to improve computational accuracy of the D-Wave QPU
- Encouraging preliminary results suggest QCAM recall accuracy can be improved by CLOAQC

Future Work

- Explore benefits of control for QCAM capacity
- Optimizing control with respect to capacity
- Methods for accelerating CLOAQC convergence

JOHNS HOPKINS APPLIED PHYSICS LABORATORY