
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Programmation d’un
D-Wave en Logique

Scott Pakin
26 September 2018

Qubits 2018 D-Wave Users Conference
Knoxville, Tennessee

LA-UR-18-28574

Outline

• A bunch of concepts that seem totally unrelated to each other
• Putting it all together
• Conclusions

26-Sep-2018Los Alamos National Laboratory

The Year is 1972

26-Sep-2018Los Alamos National Laboratory

Horn Clauses

26-Sep-2018Los Alamos National Laboratory

• Named after Alfred Horn
– Horn, Alfred. “On Sentences Which are True of Direct Unions of Algebras.” Journal of

Symbolic Logic, 16(1):14–21, 1951, DOI: 10.2307/2268661
• Disjunction of literals with at most one unnegated literal
• Three types of Horn clauses:

• Executable form of logic
– Execution consists of the system deriving a contradiction to the goal
– Equivalent in computational power to a universal Turing machine

Type Disjunction form Implication form Example

Fact 𝑢 𝑢 “Scott likes the D-Wave.”

Rule ¬𝑝 ∨ ¬𝑞 ∨ ⋯∨ ¬𝑡 ∨ 𝑢 𝑢 ← 𝑝 ∧ 𝑞 ∧ ⋯∧ 𝑡 “Sophia likes X if Scott likes X.”

Goal ¬𝑝 ∨ ¬𝑞 ∨ ⋯∨ ¬𝑡 FALSE ← 𝑝 ∧ 𝑞 ∧ ⋯∧ 𝑡 “There is nothing that Sophia likes.”

The D-Wave’s Native Programming Model

26-Sep-2018Los Alamos National Laboratory

• What the hardware actually does:
– Minimize ℋ 𝜎1, 𝑠 = 5 6

7
∑ 𝜎9:�
9 + = 6

7
∑ ℎ9𝜎9?�
9 + ∑ 𝐽9,A𝜎9?𝜎A?�

9,A

– given a hardware-specific annealing schedule (𝐴(𝑠) and 𝐵(𝑠)) over time 𝑠 ∈ [0,1]
• It’s in fact slightly more complicated than that

– The ℎ9 and 𝐽9,A coefficients have a time-dependent Gaussian distribution
– External noise, crosstalk, manufacturing infidelities, and other unknowns

A D-Wave 2000Q at
D-Wave headquarters in
Burnaby, British Columbia

• What a D-Wave looks like to me:
– Minimize ℋ 𝜎1 = ∑ ℎ9𝜎9KLM

9NO + ∑ ∑ 𝐽9,A𝜎9𝜎AKLM
AN9PM

KL7
9NO

– given ℎ9 ∈ ℝ, 𝐽9,A ∈ ℝ, and solving for 𝜎9 ∈ {−1,+1}
• A slightly more realistic formulation:

– Minimize ℋ 𝜎1 = ∑ ℎ9𝜎9�
9 + ∑ 𝐽9,A𝜎9𝜎A�

9,A

– given ℎ9 ∈ [−2, 2], 𝐽9,A ∈ [−1, 1], and solving for 𝜎9 ∈ {−1,+1}
– That is, only a limited, system-specific subset of coefficients

can be nonzero, and those have limited range

Building our Building Blocks

26-Sep-2018Los Alamos National Laboratory

• Programming a D-Wave involves defining the ℎ𝒊 and 𝐽𝒊,𝒋 coefficients for
the 2-local Ising-model Hamiltonian function from the previous slide
– ℋ 𝜎1 = ∑ ℎ9𝜎9KLM

9NO + ∑ ∑ 𝐽9,A𝜎9𝜎AKLM
AN9PM

KL7
9NO

• One programming approach
– Define a set of small Hamiltonians that correspond to repeated subproblems
– Solve the small Hamiltonians in the reverse direction from what the D-Wave does:

Given the 𝜎9 variables, solve for the ℎ9 and 𝐽9,A coefficients
– Combine the small Hamiltonians to form a complete problem
– Solve the complete problem on the D-Wave in the forward direction: Given the ℎ9

and 𝐽9,A coefficients, solve for the 𝜎9 variables

• Sample problem
– Configure five lights, labeled A–E, such that

exactly one of A, B, and C is on, exactly one
of B, C, and D is on, and exactly one of C, D,
and E is on A B C D E

Solving a Subproblem

26-Sep-2018Los Alamos National Laboratory

• Subproblem to solve
– Exactly 1 of 3 lights

must be on—will apply
to {A, B, C}, {B, C, D},
and {C, D, E}

• Approach
– Set up and solve a

system of inequalities
– Constrain valid truth-

table rows to have
energy k and invalid
rows to have energy >k

𝝈𝟎 𝝈𝟏 𝝈𝟐 \ ℎ9𝜎9

KLM

9NO

+ \ \ 𝐽9,A𝜎9𝜎A

KLM

AN9PM

KL7

9NO
Must be

−1 −1 −1 −ℎO − ℎM − ℎ7 + 𝐽O,M + 𝐽O,7 + 𝐽M,7 > 𝑘

−1 −1 +1 −ℎO − ℎM + ℎ7 + 𝐽O,M − 𝐽O,7 − 𝐽M,7 = 𝑘

−1 +1 −1 −ℎO + ℎM − ℎ7 − 𝐽O,M + 𝐽O,7 − 𝐽M,7 = 𝑘

−1 +1 +1 −ℎO + ℎM + ℎ7 − 𝐽O,M − 𝐽O,7 + 𝐽M,7 > 𝑘

+1 −1 −1 +ℎO − ℎM − ℎ7 − 𝐽O,M − 𝐽O,7 + 𝐽M,7 = 𝑘

+1 −1 +1 +ℎO − ℎM + ℎ7 − 𝐽O,M + 𝐽O,7 − 𝐽M,7 > 𝑘

+1 +1 −1 +ℎO + ℎM − ℎ7 + 𝐽O,M − 𝐽O,7 − 𝐽M,7 > 𝑘

+1 +1 +1 +ℎO + ℎM + ℎ7 + 𝐽O,M + 𝐽O,7 + 𝐽M,7 > 𝑘

One solution: ℋM_`a 𝜎O, 𝜎M, 𝜎7 = 𝜎O + 𝜎M + 𝜎7 + 𝜎O𝜎M + 𝜎O𝜎7 + 𝜎M𝜎7, with 𝑘 = −2

Constructing the Full Problem

26-Sep-2018Los Alamos National Laboratory

• Given the solution to the subproblem,
– ℋM_`a 𝜎O, 𝜎M, 𝜎7 = 𝜎O + 𝜎M + 𝜎7 + 𝜎O𝜎M + 𝜎O𝜎7 + 𝜎M𝜎7

• we can simply add instances of that to define our full problem:
– ℋ 𝐴,𝐵, 𝐶, 𝐷, 𝐸 = ℋM_`a 𝐴, 𝐵, 𝐶 +ℋM_`a 𝐵, 𝐶, 𝐷 +ℋM_`a(𝐶, 𝐷, 𝐸)

which expands to
– ℋ 𝐴,𝐵, 𝐶, 𝐷, 𝐸 = 𝐴 + 2𝐵 + 3𝐶 + 2𝐷 + 𝐸 + 𝐴𝐵 + 𝐴𝐶 + 2𝐵𝐶 + 𝐵𝐷 + 2𝐶𝐷 + 𝐶𝐸 + 𝐷𝐸

• This can be passed to a D-Wave system for solution
– Hint: three valid solutions out of 32 possible configurations of the five lights

A B C D E

The Prolog Programming Language

26-Sep-2018Los Alamos National Laboratory

• “Programmation en logique”
– Or, “Programming in logic”
– Hence, the title of this talk

• Programming language based on Horn
clauses
– Very different form of programming from, say,

Python or C++
• Initially promoted for use in symbolic AI
• Formed the core of Japan’s Fifth-

Generation Computer project, 1982–1992
– Dataflow hardware optimized for running Prolog

and targeting AI applications
• Never really caught on

– Typically relegated to a brief mention in
introductory Programming Languages classes

The first Prolog system was produced
by Colmerauer and Roussel in 1972
(Marseille, France). Clocksin and
Mellish’s popular textbook came out
about ten years later.

Prolog Code Execution

26-Sep-2018Los Alamos National Laboratory

• Given the code shown to the right, the Prolog
system solves for variable What
– That is, it disproves the claim that there is no value that

can be assigned to What
• Effective control flow

likes(scott, dwave).
likes(sophia, X) :-

likes(scott, X).
:- likes(sophia, What).

Sophia Pakin holding
a D-Wave chip and
enclosure

– :- likes(sophia, What). “I must find a What that makes this
statement TRUE.”

– likes(sophia, X) :-
likes(scott, X).

“If I can prove that Scott likes X, then I
can prove that Sophia likes X.”

– likes(scott, dwave). “I can prove that Scott likes the D-Wave.”

– likes(sophia, dwave). “By unifying X with dwave, I can prove
that Sophia likes the D-Wave.”

– What = dwave QED. Proof by contradiction.

Key Prolog Concepts

26-Sep-2018Los Alamos National Laboratory

• Unification
– Assigning values to variables to make patterns match
– Example 1: Unification succeeds in :- knows(A, B),

female(A), male(B) by binding A to dianne, B to bo,
and (internally) C to dwave

– Example 2: Unification fails in :- knows(marcus, W)
• Predicates can complete zero, one, or more

times
– Prolog returns all valid variable assignments
– Example: :- knows(A, B) returns both {A=dianne,

B=bo} and {A=bo, B=dianne} as well as {A=bo,
B=bo}, {A=dianne, B=dianne}, {A=chad, B=chad}, and
{A=talia, B=talia}

male(bo).
male(chad).
female(dianne).
female(talia).
works_at(bo, dwave).
works_at(chad, rigetti).
works_at(dianne, dwave).
works_at(talia, ibm).

knows(P1, P2) :-
works_at(P1, C),
works_at(P2, C).

– If there are no variables in the goal, Prolog returns TRUE if the goal is a provably true
statement or FALSE if it is not provably true

– Example: :- works_at(talia, ibm) returns TRUE, but :- works_at(talia, dwave) returns FALSE

Key Prolog Concepts (cont.)

26-Sep-2018Los Alamos National Laboratory

• Backtracking
– If unification fails at any point, Prolog backs up

and tries again with alternative facts and rules
– Example: :- knows(A, B), female(A), male(B)

§ Need to satisfy knows(A, B)
§ Possible solution: A=bo, B=bo
§ Need to satisfy female(bo)
§ Fail; backtrack to knows(A, B)
§ Possible solution: A=bo, B=dianne
§ Need to satisfy female(bo)
§ Fail; backtrack to knows(A, B)

…
§ Possible solution: A=dianne, B=bo
§ Success; backtrack to knows(A, B) to find more

– Program order determines the order in which
facts and rules are considered
§ Consider: :- female(A), knows(A, B), male(B)

“Sean Spicer, our press
secretary, gave alternative
facts to that, but the point
remains…”

Kellyanne Conway
22 January 2017

Key Prolog Concepts (cont.)

26-Sep-2018Los Alamos National Laboratory

• Backtracking
– If unification fails at any point, Prolog backs up

and tries again with alternative facts and rules
– Example: :- knows(A, B), female(A), male(B)

§ Need to satisfy knows(A, B)
§ Possible solution: A=bo, B=bo
§ Need to satisfy female(bo)
§ Fail; backtrack to knows(A, B)
§ Possible solution: A=bo, B=dianne
§ Need to satisfy female(bo)
§ Fail; backtrack to knows(A, B)

…
§ Possible solution: A=dianne, B=bo
§ Success; backtrack to knows(A, B) to find more

– Program order determines the order in which
facts and rules are considered
§ Consider: :- female(A), knows(A, B), male(B)

Digital Circuit Design

26-Sep-2018Los Alamos National Laboratory

• Today, virtually all hardware is created using a hardware description
language (HDL)
– Lets one think gates but write textual code
– Multi-bit variables, arithmetic/relational operators, conditionals, loops, modules, …

• Hardware synthesis tool compiles code to logic gates (netlist format)

a[0]
a[1]

b[0]

b[1]

s

res[0]

res[1]

res[2]

module my_prog (s,
a, b, res);

input s;
input [1:0] a, b;
output [2:0] res;

always @*
if (s == 1)
res = a + b;

else
res = a - b;

endmodule

Something to Consider

26-Sep-2018Los Alamos National Laboratory

• We can express a logic gate as a Hamiltonian function
– Minimized at any valid relation of inputs and outputs
– Force 𝜎9 to TRUE (+1) with ℋfgg 𝜎9 = −𝜎9 and to FALSE (−1) with ℋhij 𝜎9 = 𝜎9
– Ergo, ℋ∧ 𝐴, 𝐵, 𝑌 +ℋfgg 𝐴 +ℋhij(𝐵) anneals to {𝐴 = +1, 𝐵 = −1, 𝑌 = −1}
– Much cooler: ℋ∧ 𝐴, 𝐵, 𝑌 +ℋfgg 𝑌 anneals to {𝐴 = +1, 𝐵 = +1, 𝑌 = +1}

Gate 2-local Ising-model Hamiltonian function

ℋ¬(𝜎1) = 𝜎5𝜎l

ℋ∧(𝜎1) = −
1
2𝜎5 −

1
2𝜎= + 𝜎l +

1
2𝜎5𝜎= − 𝜎5𝜎l − 𝜎=𝜎l

ℋ⊕ 𝜎1 =
1
2𝜎5 −

1
2𝜎= −

1
2𝜎l + 𝜎n −

1
2𝜎5𝜎= −

1
2𝜎5𝜎l + 𝜎5𝜎n +

1
2𝜎=𝜎l − 𝜎=𝜎n − 𝜎l𝜎n

ℋ∨(𝜎1) =
1
2𝜎5 +

1
2𝜎= − 𝜎l +

1
2𝜎5𝜎= − 𝜎5𝜎l − 𝜎=𝜎l

XOR

AND

OR

NOT

Outline

• A bunch of concepts that seem totally unrelated to each other
• Putting it all together
• Conclusions

26-Sep-2018Los Alamos National Laboratory

The Talk So Far

26-Sep-2018Los Alamos National Laboratory

D-Wave
(superconducting qubits) Me (giving this talk)

Digital
circuitry

Logic
(Prolog

programming)

Proposal

26-Sep-2018Los Alamos National Laboratory

• Run Prolog programs on a D-Wave system
– That is, compile Prolog programs to a 2-local Ising-model Hamiltonian function
– The Hamiltonian’s (possibly degenerate) ground state should correspond to all valid

variable bindings
• Insights

– Prolog unification can be replaced by equating variables (with a 𝐽9,A < 0)
– Prolog’s backtracking strategy can be replaced by annealing to valid solutions
– Prolog’s ability to return multiple solutions can be handled by repeated anneals

• Primary challenge
– Huge semantic gap between this:

– and this: ℋ 𝜎1 = ∑ ℎ9𝜎9KLM
9NO + ∑ ∑ 𝐽9,A𝜎9𝜎AKLM

AN9PM
KL7
9NO

likes(scott, dwave).
likes(sophia, X) :-

likes(scott, X).
:- likes(sophia, What).

Approach

26-Sep-2018Los Alamos National Laboratory

Logic
programming
language

Hardware
description
language

Netlist format Quantum macro
assembler

Physical, 2-local
Ising-model
Hamiltonian
function

High-level
symbolic and
constraint-logic
programming
constructs

Support for multi-
bit arithmetic and
relational
operators with
the ability to
compile to
simple primitives
(logic gates)

Precise
specification of
inter-gate
connectivity

Logical
(hardware-
independent),
symbolic
Hamiltonians,
macros for
representing
sub-problems

Ability to run on
a D-Wave
quantum
annealer

Prolog Verilog EDIF QMASM ℋ

Step 0: Prolog

26-Sep-2018Los Alamos National Laboratory

• Let’s use our knows example from earlier in
the talk
– Large enough to be interesting
– Small enough to fit on a slide
– (And generated intermediate files come close to

fitting on a slide)

male(bo).
male(chad).
female(dianne).
female(talia).
works_at(bo, dwave).
works_at(chad, rigetti).
works_at(dianne, dwave).
works_at(talia, ibm).

knows(P1, P2) :-
works_at(P1, C),
works_at(P2, C).

:- knows(A, B),
female(A),
male(B).

Step 1: Verilog

26-Sep-2018Los Alamos National Laboratory

• Almost a 1:1 mapping from Prolog predicates to Verilog modules
– Code excerpt (missing only works_at and female):

// Define all of the symbols used
in this program.
`define bo 3'd0
`define chad 3'd1
`define dianne 3'd2
`define dwave 3'd3
`define ibm 3'd4
`define rigetti 3'd5
`define talia 3'd6

// Define Query(atom, atom).
module Query (A, B, Valid);
input [2:0] A;
input [2:0] B;
output Valid;
wire [2:0] $v1;
\knows/2 \knows_xvLbZ/2 (A,

B, $v1[0]);
\female/1 \female_GBAIc/1 (A,

$v1[1]);
\male/1 \male_mraJw/1 (B,

$v1[2]);
assign Valid = &$v1;

endmodule

// Define knows(atom, atom).
module \knows/2 (A, B, Valid);
input [2:0] A;
input [2:0] B;
output Valid;
(* keep *) wire [2:0] C;
wire [1:0] $v1;
\works_at/2

\works_at_WHthC/2 (A, C,

$v1[0]);
\works_at/2

\works_at_TCUaX/2 (B, C,
$v1[1]);
assign Valid = &$v1;

endmodule

// Define male(atom).
module \male/1 (A, Valid);
input [2:0] A;
output Valid;
wire $v1;
assign $v1 = A == `bo;
wire $v2;
assign $v2 = A == `chad;
assign Valid = &$v1 | &$v2;

endmodule

Step 2: EDIF

26-Sep-2018Los Alamos National Laboratory

• Forms a circuit from cells (gates) and nets (wires)
– Excerpt from the generated, 454-line, machine-parsable s-expression:

(cell (rename id00013 "female/1")
(cellType GENERIC)
(view VIEW_NETLIST

(viewType NETLIST)
(interface

(port (array A 3) (direction INPUT))
(port Valid (direction OUTPUT)))

(contents
(instance GND (viewRef VIEW_NETLIST

(cellRef GND (libraryRef LIB))))
(instance VCC (viewRef VIEW_NETLIST

(cellRef VCC (libraryRef LIB))))
(instance (rename id00014

"abc221$auto$blifparse.cc:286:parse_blif$222")
(viewRef VIEW_NETLIST (cellRef id00001

(libraryRef LIB))))
(instance (rename id00015

"abc221$auto$blifparse.cc:286:parse_blif$223")

(viewRef VIEW_NETLIST (cellRef id00002
(libraryRef LIB))))

(net (rename id00016 "abc221$n5_1")
(joined

(portRef B (instanceRef id00015))
(portRef Y (instanceRef id00014))))

(net Valid (joined
(portRef Valid)
(portRef Y (instanceRef id00015))))

(net (rename id00010 "A[0]") (joined
(portRef (member A 0))
(portRef A (instanceRef id00014))))

(net (rename id00011 "A[1]") (joined
(portRef (member A 1))
(portRef A (instanceRef id00015))))

(net (rename id00012 "A[2]") (joined
(portRef (member A 2)))))))

Step 3: QMASM

26-Sep-2018Los Alamos National Laboratory

• Gates become macro instantiations; wires become QMASM “=“ (𝐽9,A < 0)
!include <stdcell>

works_at/2
!begin_macro id00017

!use_macro AOI3 $id00023
!use_macro AOI3 $id00024
!use_macro NAND $id00029
!use_macro NOR $id00022
!use_macro NOT $id00018
!use_macro NOT $id00020
!use_macro NOT $id00021
!use_macro NOT $id00025
!use_macro OAI4 $id00031
!use_macro OR $id00019
!use_macro OR $id00026
!use_macro OR $id00027
!use_macro OR $id00028
!use_macro OR $id00030
A[0] <-> $id00021.A
A[1] <-> $id00020.A

A[2] <-> $id00029.A
B[0] <-> $id00025.A
B[1] <-> $id00019.B
$id00019.A = $id00018.Y
$id00019.A = $id00022.A
$id00019.A = $id00024.A
$id00019.B = $id00022.B
$id00019.B = $id00024.B
$id00020.A = $id00029.B
$id00021.A = $id00024.C
$id00021.A = $id00028.B
$id00022.A = $id00018.Y
$id00022.A = $id00024.A
$id00022.B = $id00024.B
$id00023.A = $id00022.Y
$id00023.B = $id00020.Y
$id00023.C = $id00021.Y
$id00024.A = $id00018.Y
$id00025.A = $id00028.A
$id00026.A = $id00025.Y

$id00027.A = $id00026.Y
$id00027.B = $id00024.Y
$id00028.B = $id00024.C
$id00029.A = $id00026.B
$id00030.A = $id00029.Y
$id00030.B = $id00028.Y
$id00031.A = $id00030.Y
$id00031.B = $id00019.Y
$id00031.C = $id00027.Y
$id00031.D = $id00023.Y
A[0] = $id00024.C
A[0] = $id00028.B
A[1] = $id00029.B
A[2] = $id00026.B
B[0] = $id00028.A
B[1] = $id00022.B
B[1] = $id00024.B
B[2] = $id00018.A
Valid = $id00031.Y

!end_macro id00017

Step 4: The Final Hamiltonian

26-Sep-2018Los Alamos National Laboratory

Metric Type Count
Linear terms (ℎ9) Logical 108

Physical 282
Quadratic terms (𝐽9,A) Logical 185

Physical 365

• Targets a specific D-Wave device
– Uses the SAPI library’s minor-embedder

• Representative embedding statistics for this problem:

It Really Works!

26-Sep-2018Los Alamos National Laboratory

$ qa-prolog --verbose --qmasm-args="-O2 -v --postproc=opt" --query="knows(A,
B), female(A), male(B)." works_at.pl
qa-prolog: INFO: Parsing works_at.pl as Prolog code
qa-prolog: INFO: Representing symbols with 3 bit(s) and integers with 1 bit(s)
qa-prolog: INFO: Storing intermediate files in works_at
qa-prolog: INFO: Writing Verilog code to works_at.v
qa-prolog: INFO: Writing a Yosys synthesis script to works_at.ys
qa-prolog: INFO: Converting Verilog code to an EDIF netlist
qa-prolog: INFO: Executing yosys -q works_at.v works_at.ys -b edif -o works_at.edif
qa-prolog: INFO: Converting the EDIF netlist to QMASM code
qa-prolog: INFO: Executing edif2qmasm -o works_at.qmasm works_at.edif
qa-prolog: INFO: Executing qmasm --run --values=ints -O2 -v --postproc=opt --
pin=Query.Valid := true works_at.qmasm
A = dianne
B = bo

Outline

• A bunch of concepts that seem totally unrelated to each other
• Putting it all together
• Conclusions

26-Sep-2018Los Alamos National Laboratory

Conclusions

26-Sep-2018Los Alamos National Laboratory

• There exists a huge semantic gap between programming with logic
(Horn clauses) and programming an Ising-model Hamiltonian function

• It turns out it is indeed possible to bridge this gap
• Insights

– Analogy between variable unification and impact of negative quadratic coefficients
– Serial backtracking can be replaced by constraining all valid solutions to lie in a

degenerate ground state
– Transformation from one classical problem to another; no need to explicitly reason

about quantum effects
• Approach: successive lowering of the level of abstraction

– Logic program → hardware program → circuit specification → symbolic
Hamiltonian → physical Hamiltonian

• It is now possible to program a quantum annealer with an existing,
classical, logic-programming language

For More Information

26-Sep-2018Los Alamos National Laboratory

• Pakin, Scott. “Performing Fully Parallel Constraint Logic Programming
on a Quantum Annealer.” Theory and Practice of Logic Programming,
vol. 18, no. 5–6, 2018, pp. 928–949, September 2018. Eds.: Ferdinando
Fioretto and Enrico Pontelli. Cambridge University Press. ISSN: 1475-
3081, DOI: 10.1017/S1471068418000066.

• Try the code yourself:

https://github.com/lanl/QA-Prolog

