QUANTUM ANNEALING BASED OPTIMIZATION OF ROBOTIC MOVEMENT IN MANUFACTURING.

QUBITS EUROPE 2019 | 25.03.2019

Arpit Mehta

2019

WHO AM I?

arpit.mehta @bmwgroup.com Solution Architect/Data Scientist ML-focused architectures Research in QC/AI/ML R, Scala, Kafka, Spark, TF Loves cycling & traveling

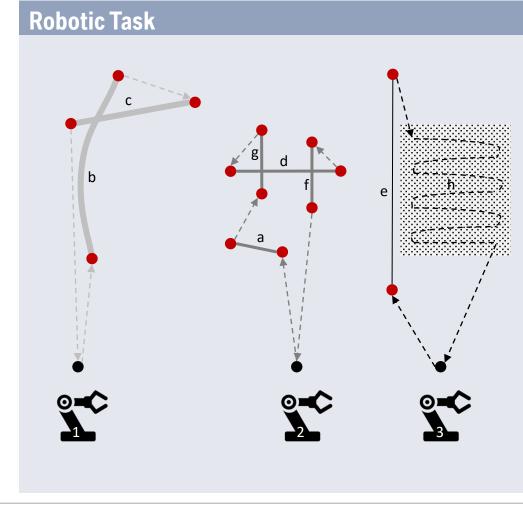

AGENDA.

Use Case Introduction
Why it is relevant for an automotive producer?

Formal Description
 Mathematical description of variables and objective functions

Use-Case

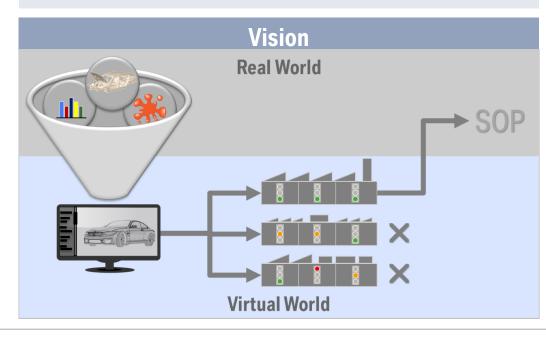
Introduction


PVC APPLICATION ROBOTIC PROCESS.

PVC Application serves to seal the gaps of joined sheets, thereby preventing the ingress of corrosive media.

INITIAL USE-CASE TASK.

Calculation of a production plan in which all seams are processed within a given cycle time.



Optimization Tasks

Scheduling: Efficient allocation of tasks to available robots.

Sequencing and Motion Planning:

Minimizing the routes for all robots and creation of collision-free robot movements.

CHALLENGES AND SCOPE OF PVC SEALING.

Great effort during robot program creation.

- High requirements with respect to the application.

- High complexity.

	Number and length of PVC seams						
Model				G30		F48	
Engine bay	69	20,9 m	77	14,9 m	53	16,19 m	
Underbody	91	33,2 m	101	31,0 m	79	25,44 m	
Wheelhouse	50	27,2 m	38	19,3 m	92	30,16 m	
Rest	52	22,7 m	59	24,0 m	47	20,46 m	
Σ	262	104,5 m	279	89,2 m	271	92,25 m	

→ Total length: 89 - 105 m → Number of seams: 262 - 279 $\oint \phi$ -Length 0,35 m

Po	ossible c	ombinat	tions for s	cheduling	
Scheduling Underbody G30				Layout NVU W2.4	
	26	10	7	55 55 55	
	7	1	2		
	29	12	7	55 55 55	

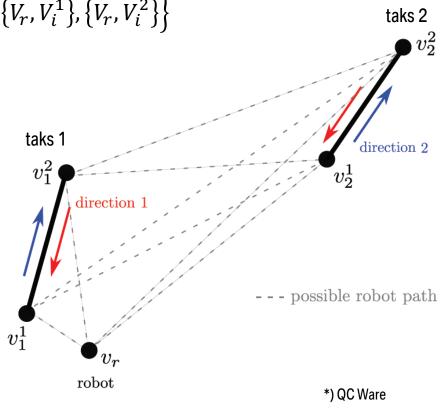
Possible allocations in consideration of accessibility: $\rightarrow 10^{50} \approx 3^{44} \cdot 3^{20} \cdot 3^{49} \cdot 3^{22}$

The huge amount of possible combinations challenges cognitive abilities of humans. Support through planning and optimization tools is expedient.

Ecmbo

Description

FORMAL DESCRIPTION*.


Modelling as weighted graph

-G = (V, E, W) $-V = \{V_r\} \cup \{\bigcup_{i=1}^{N} \{V_i^1, V_i^2\}\}$ $-E = \bigcup_{i=1}^{N} \bigcup_{\substack{j=1\\ j \neq i}}^{N} \{\{V_i^1, V_j^1\}, \{V_i^1, V_j^2\}, \{V_i^2, V_j^1\}, \{V_i^2, V_j^2\}\} \cup \bigcup_{i=1}^{N} \{\{V_r, V_i^1\}, \{V_r, V_i^2\}\}$ $-W: E \to [0, \infty)$

Logical variables

- $-x = \{0, 1\}^{2N^2}$
- Meaning of logical variable $x_{i,t}^{(d)}$:

Robot should process ith task at stept in direction d

OBJECTIVE FUNCTION*.

$$f(\mathbf{x}) = f_{distance}(\mathbf{x}) + f_{tasks}(\mathbf{x}) + f_{time}(\mathbf{x})$$

Distance travelled by the robot between the tasks.

$$f_{distance}(\mathbf{x}) = \sum_{k,l=1}^{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \sum_{t=1}^{N} \frac{W(\{v_{i}^{l}, v_{j}^{k}\})}{2} \left(x_{i,t}^{(l)} x_{j,t+1}^{(k')} + x_{j,t}^{(k)} x_{i,t+1}^{(l')}\right) + \sum_{i=1}^{N} W(\{v_{r}, v_{i}^{2}\}) x_{i,1}^{(1)} + W(\{v_{r}, v_{i}^{1}\}) x_{i,1}^{(2)}$$

Constraint that all tasks are performed exactly once.

$$f_{task}(\mathbf{x}) = \sum_{i=1}^{N} P_{task}^{i} \left(1 - \sum_{t=1}^{N} x_{i,t}^{(1)} + x_{i,t}^{(2)} \right)^{2}$$

Constraint that at each time step, exactly one task is performed.

$$f_{time}(\mathbf{x}) = P_{time} \sum_{t=1}^{N} \left(1 - \sum_{i=1}^{N} x_{i,t}^{(1)} + x_{i,t}^{(2)} \right)^2$$

*) QC Ware

Experimental Setup

EXPERIMENTAL SETUP

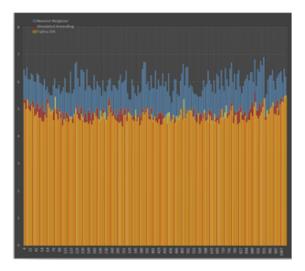
Hardware: DWave 2000Q Annealing Cycle:

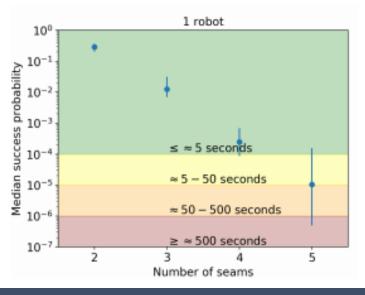
- Less than 4 tasks 10.000 cycles.
- More than 4 tasks 1.000.000 cycles.

For the testing the use case, the robotic tasks are defined in 2D.

Following is the definition of the tasks along with start and end coordinate of each tasks, along with the velocity of robot.

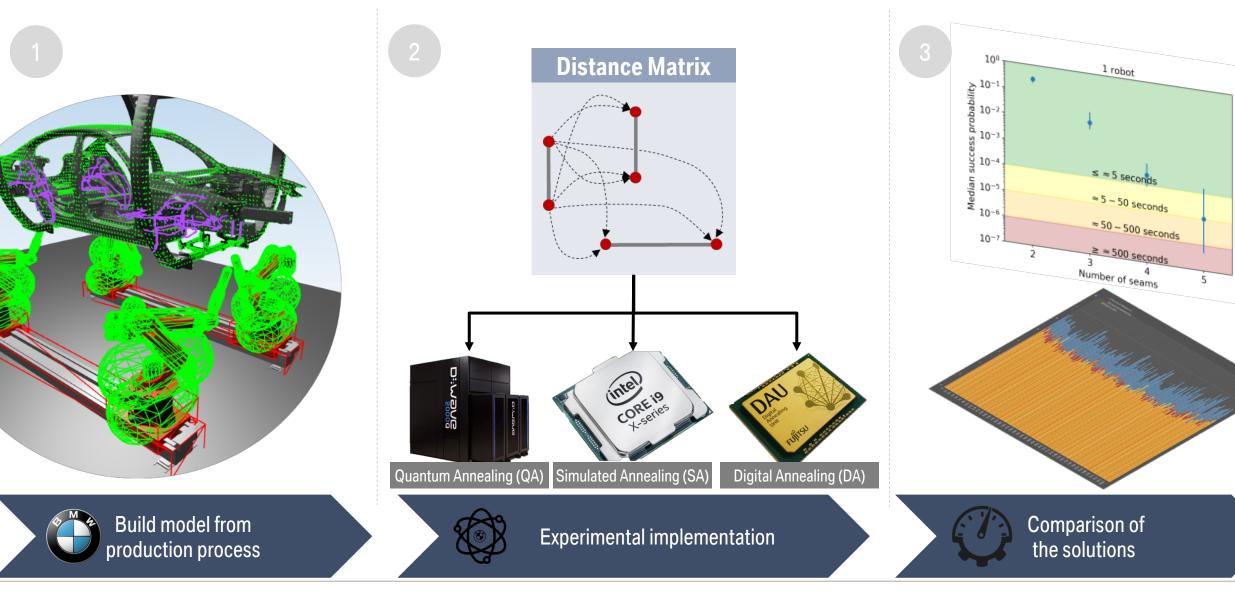
Task	Start	End	Velocity
а	(287, 619)	(17, 479)	94
b	(595, 627)	(592, 52)	58
С	(488, 353)	(43, 565)	68
d	(450, 142)	(688, 580	63
е	(136, 403)	(630, 170)	70


Result and Conclusion

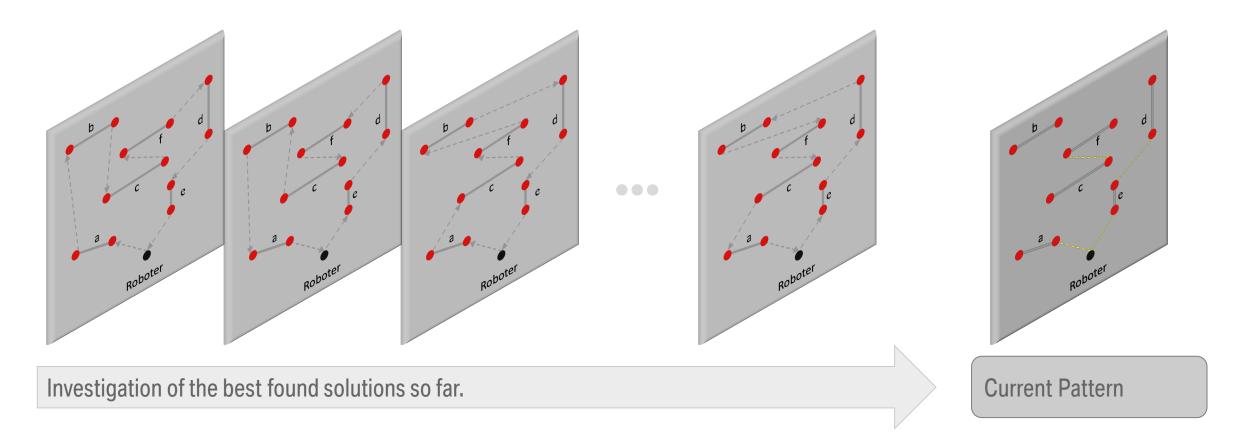

KEY TAKEAWAYS

- QA approach successfully found the optimal solution.
- Due to hardware limitations only roundtrips with up to 5 seams could be solved.
- High Potential in speedup with improved hardware capacity

QA vs Simulated Annealing



Quantum Annealing Performance



QA Hardware is still in a development phase and requires further development for bringing concrete business value.

FROM THE MANUFACTURING PROBLEM TO A QUANTUM INSPIRED SOLUTION.

FUTURE WORK. EMBEDDING OF HEURISTIC METHODS.

Evaluation of best found solutions to shrink the solution space and improve the convergence behavior through pattern recognition.

THANKS FOR YOUR ATTENTION! QUESTIONS?

<u>quantumcomputing@bmw.de</u>