Statistical Classification of High-throughput Multi-omics Cancer Data on Quantum Computing Architectures

Tom Chittenden, PhD, DPhil, PStat Chief Al Scientist Founding Director, Advanced Al Research Laboratory Lecturer on Pediatrics, Harvard Medical School

WuXi NextCODE Global Predictive Analytics Initiative

deepCODE Deep Learning and Probabilistic Programming – Faster, cost-effective drug development

Adding value to drug discovery pipelines

- Drug target discovery and drug repurposing with novel ensemble computational intelligence strategies with integrated data platforms to identify 'causal' driver genes and molecular signaling transduction networks
 - Proof of concept for causal statistical learning approaches.
 - Focus of Today's Talk.
- Discover accurate integrated 'omics' profile that defines responders and non-responders for a drug in development
 - Pharma partners can use our profile to decrease cost and time of phase II or phase III trials.
 - WXNC can provide sequencing/ GOR database/ analysis/ deep learning.
 - Note approach may work on small sample sizes deep learning is powerful enough to potentially find drug response profiles even in phase I clinical trials with only 40 to 60 patients on drug.
- Discover accurate integrated 'omics' profile that defines responders and non-responders for an approved expensive drug that is being underutilized
 - Pharma can use our profile to justify use and reimbursement for their drug.
 - A drug response profile could salvage the marketing of their drug.

Al & Deep Learning

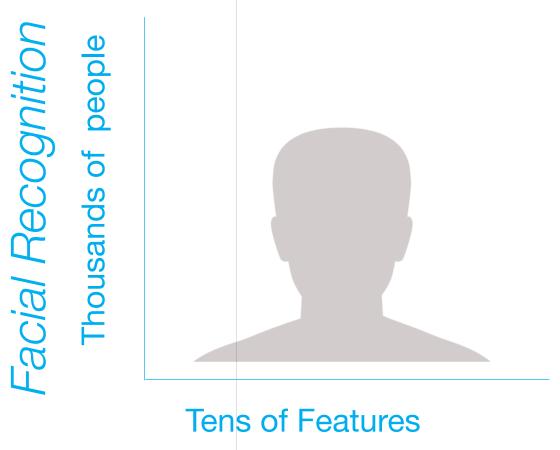
Facial Recognition & DeepCODE Feature Selection Analogy

11

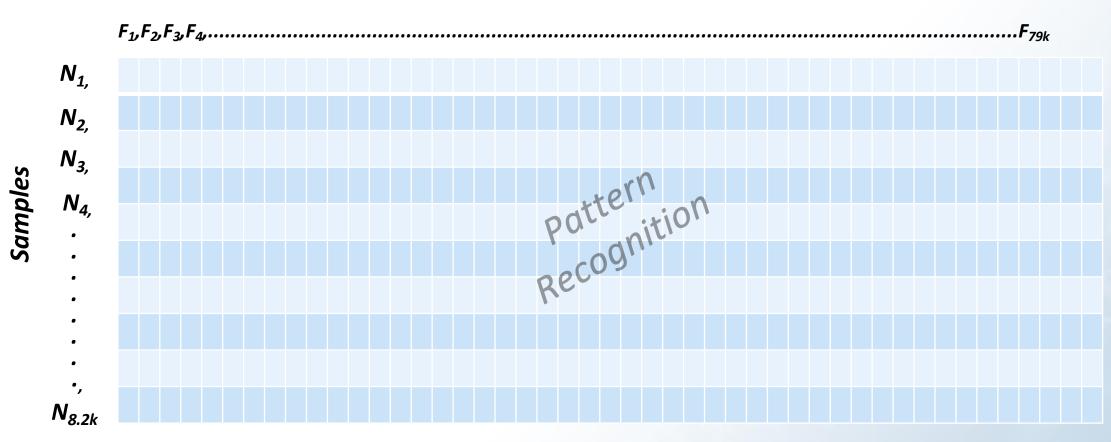
15

16

(Facebook AI team's Facial Recognition Algorithm boasts 97.25% Accuracy)



Our deepCODE dimensionality reduction methods enhance algorithm stability and allow us to handle tens of thousands of features without overfitting



Features

WuXiNextCODE

A.I. and Precision Medicine

The computational power of modern A.I. technology is well-positioned to uncover new and actionable insights from the exponentially growing pool of biological data.

FEATURE LEARNING

The intelligent simplification of high-dimensional multi-omic data without loss of information

MACHINE & DEEP LEARNING

Intelligent algorithms capable of self-optimization to achieve incredible accuracy with complex, layered data

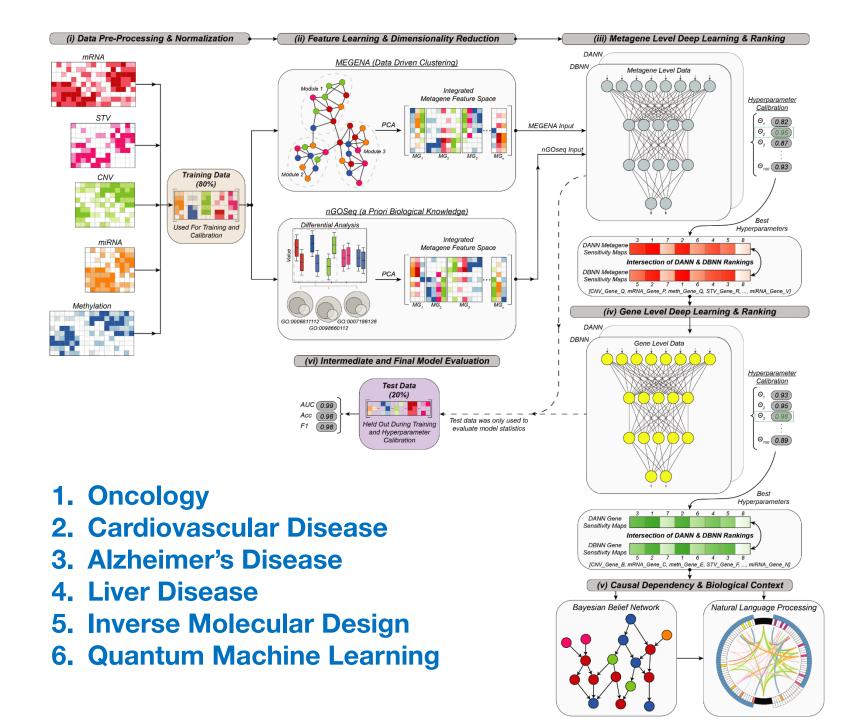
CAUSAL INFERENCE

Specialized statistical learning models capable of elucidating casual dependencies within biological data

NATURAL LANGUAGE PROCESSING

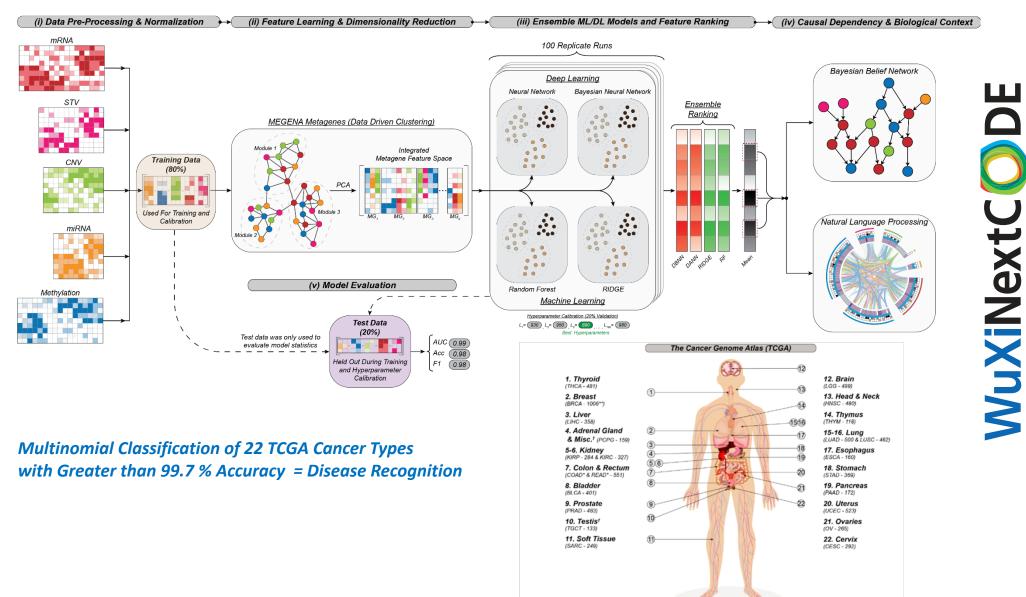
Intelligent scanning of sentence syntax to understand and validate findings in context, at scale

The combination of several A.I. methods create a proprietary ensemble A.I. strategy capable of revealing novel patterns and causal dependencies in disparate and varied biological data.



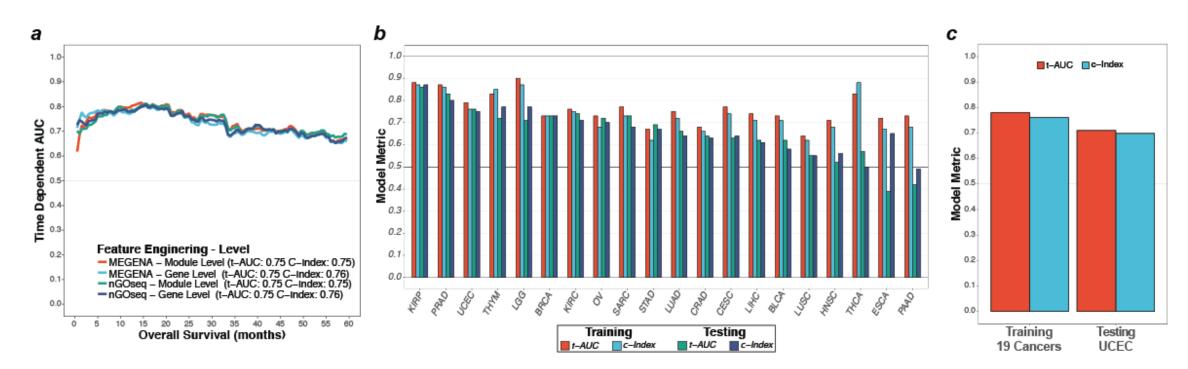
WuXiNextCODE

Enhanced Feature Reproducibility for Causal Statistical Learning



Large-scale clinical outcome study: TCGA Pan-Cancer Time-dependent Survival Analysis

Prediction of overall survival across 20 different cancers types with 75% accuracy



Data Matrix

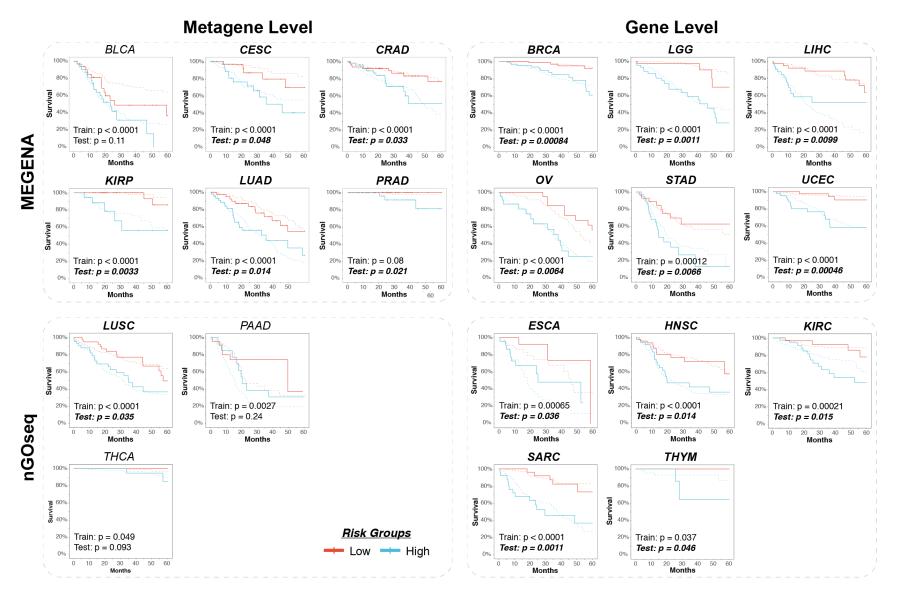
- 79k Molecular Features + 1 Clinical variable: Age
- 6,122 Training Samples
- 1,853 Testing Samples
- 20 Cancer Types

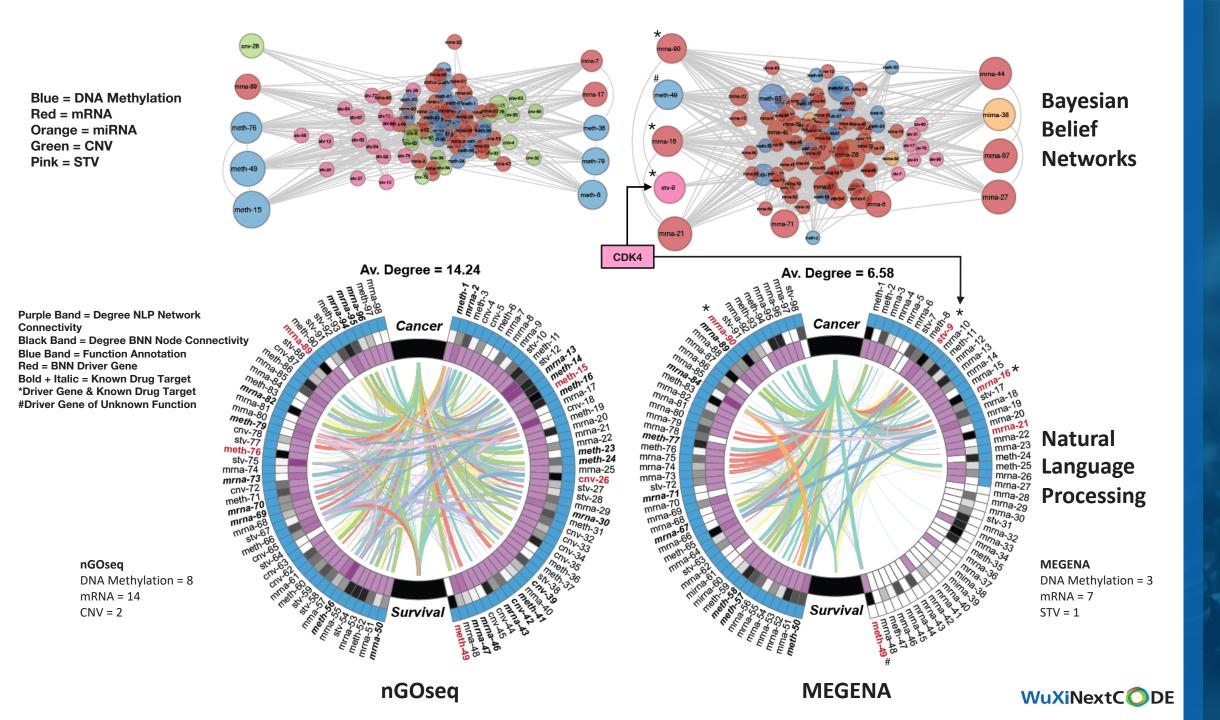
Interpretation: Compensating for overall survival instead of disease specific survival

Estimator of cumulative/dynamic AUC for right-censored time-to-event data: Uno et al. Journal of the American Statistical Association, 2007

Large-scale clinical outcome study: TCGA Pan-Cancer Survival Analysis

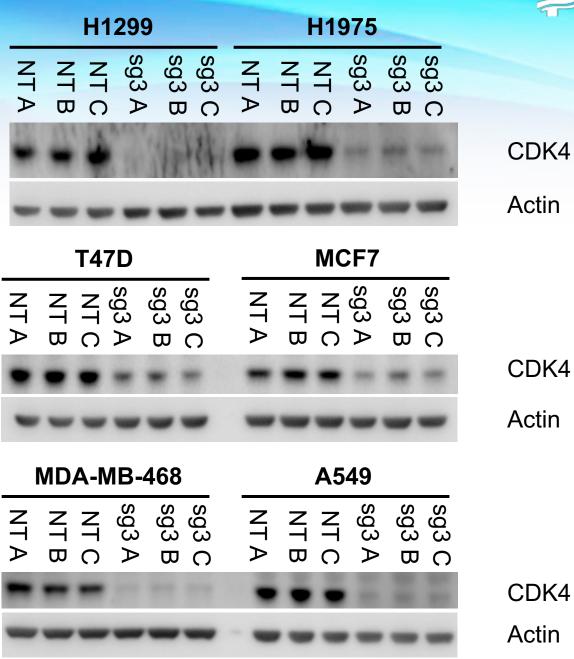
Risk Stratification across 20 TCGA Cancers Types



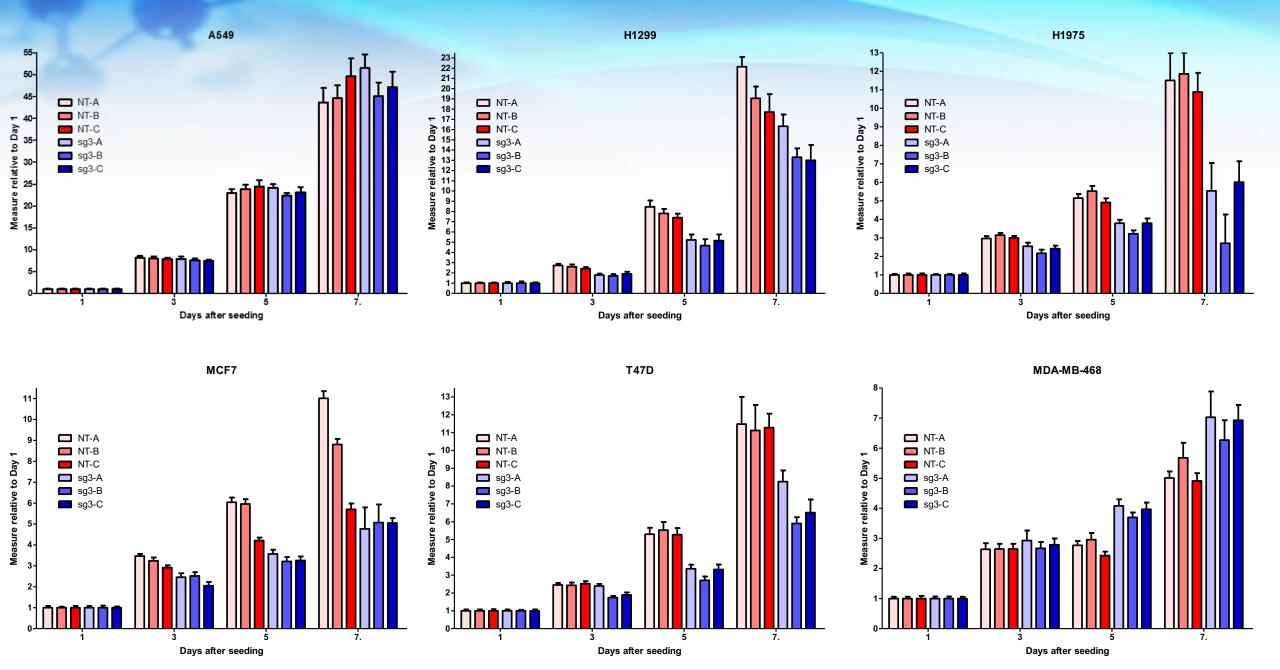


CDK4 KO confirmation by WB:

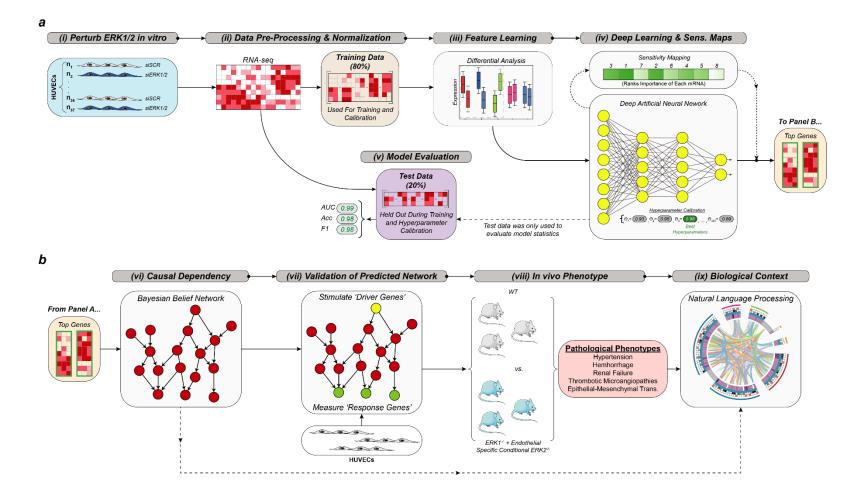
***Approved CDK4/6 inhibitors** for metastatic ER-positive/HER2-negative breast cancer: *Kisqali* (Norvartis), *Verzenio* (Lilly), and *Ibrance* (Pfizer).



CDK4 KO vs NT Growth curves

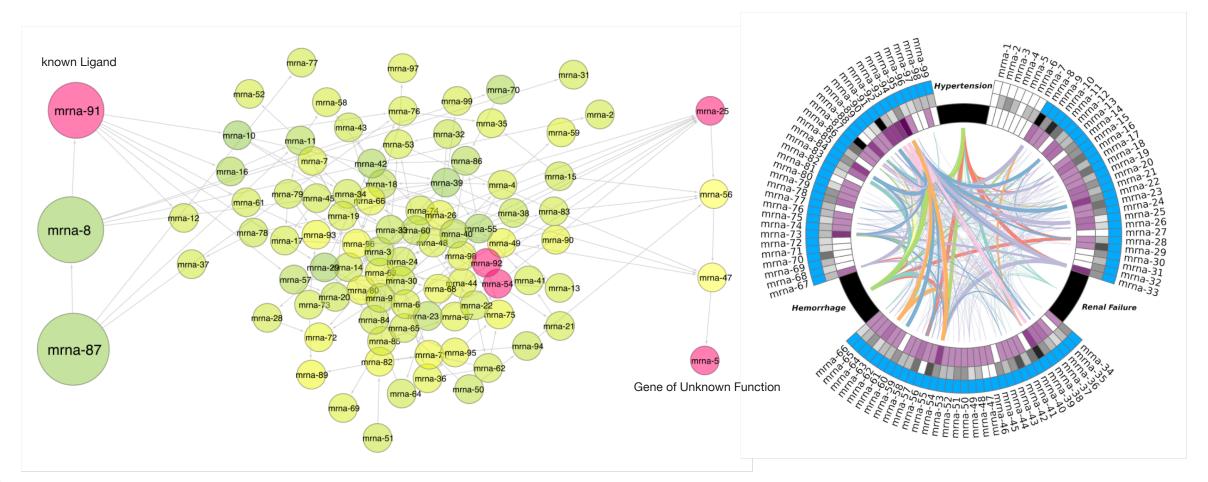


Identifying Causal Drivers of Cardiovascular Disease: Hypertension, Vascular Hemorrhage, and Renal Failure



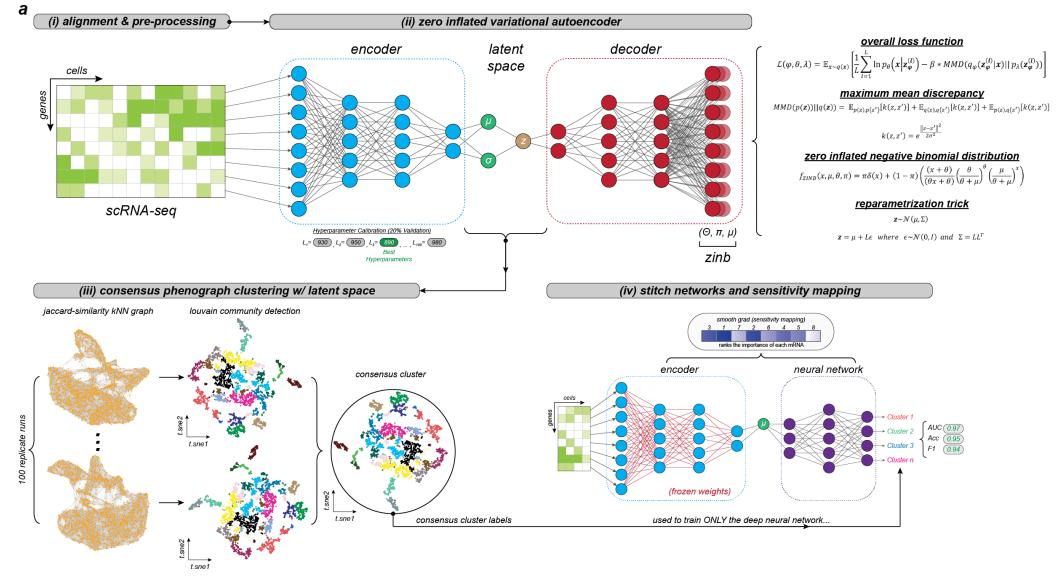
Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

Identifying Causal Drivers of Cardiovascular Disease: Hypertension, Vascular Hemorrhage, and Renal Failure



Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

Identifying Causal Drivers of Cardiovascular Disease: Aortic Aneurysm and Atherosclerosis

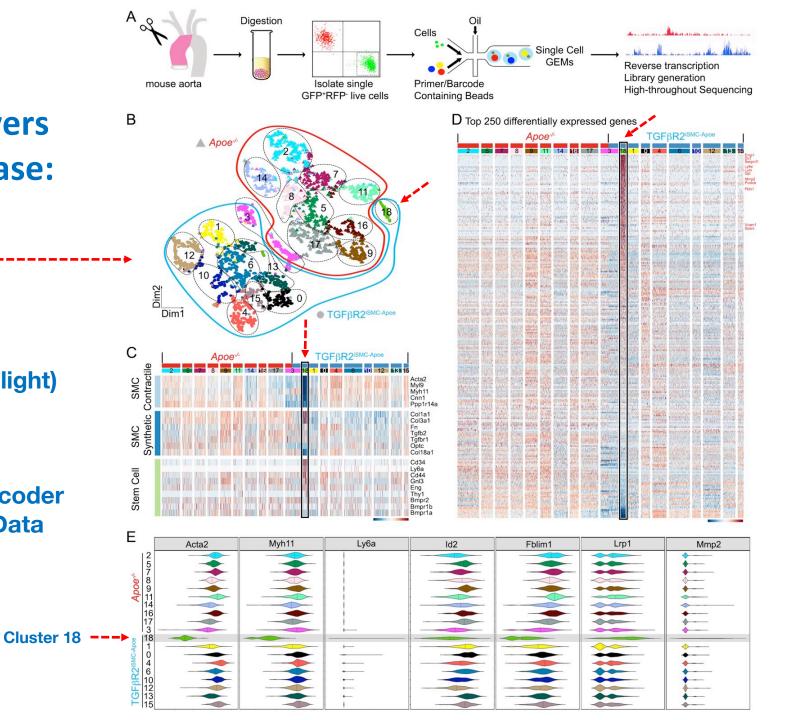


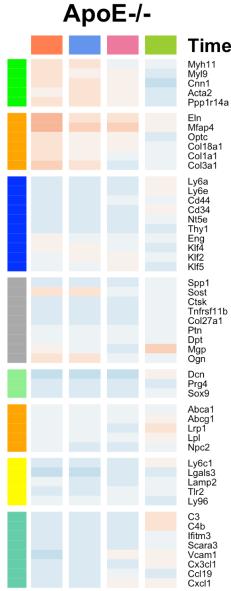
Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data Identifying Causal Drivers of Cardiovascular Disease: Aortic Aneurysm

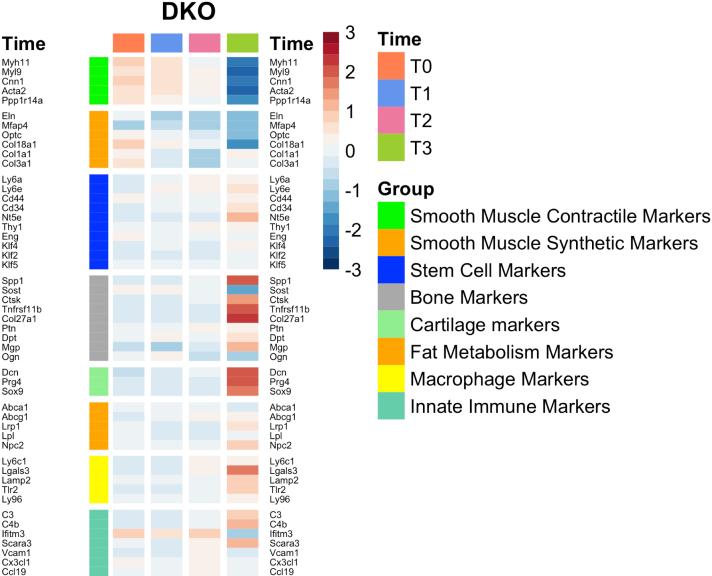
CyTOF (Cytometry by Time of Flight)

Vs.

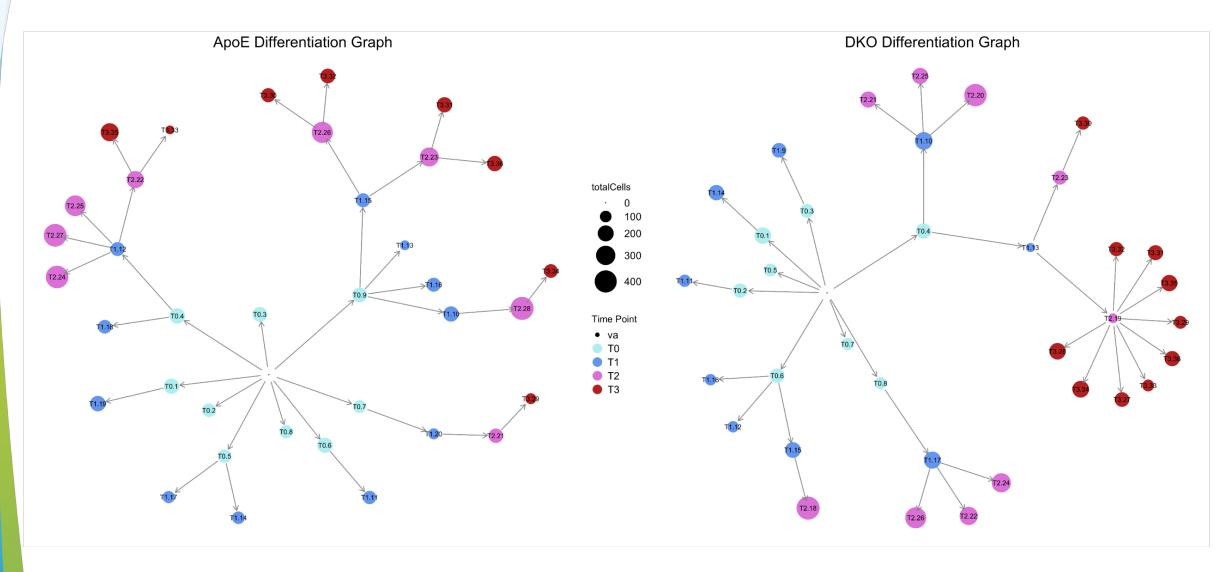
Zero Inflated Variational Autoencoder (VAE) of Single Cell RNA-seq Data

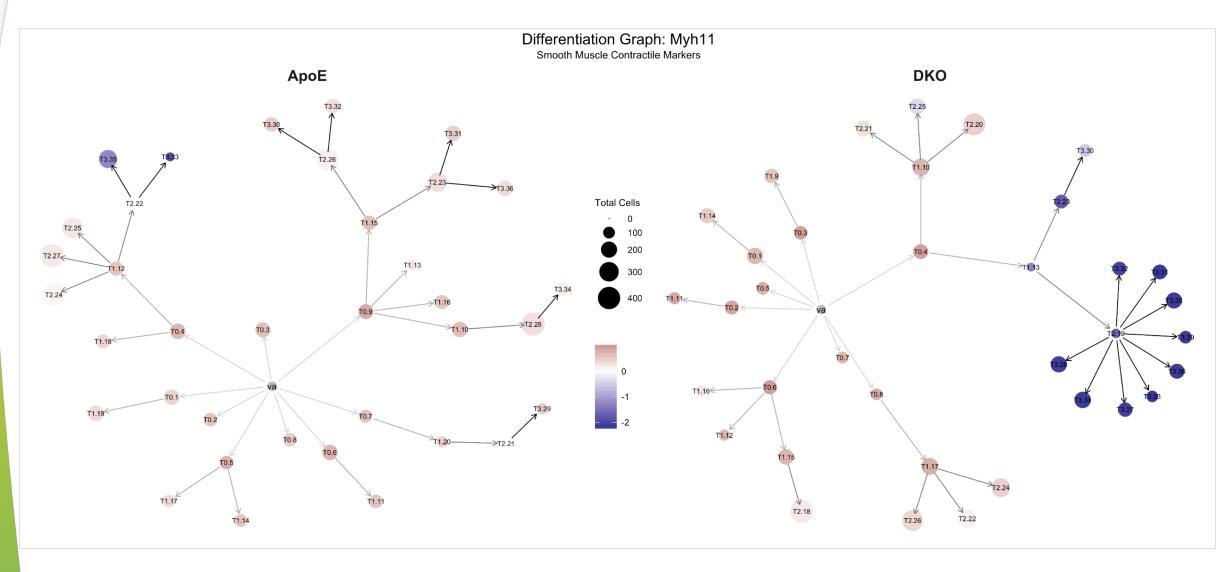


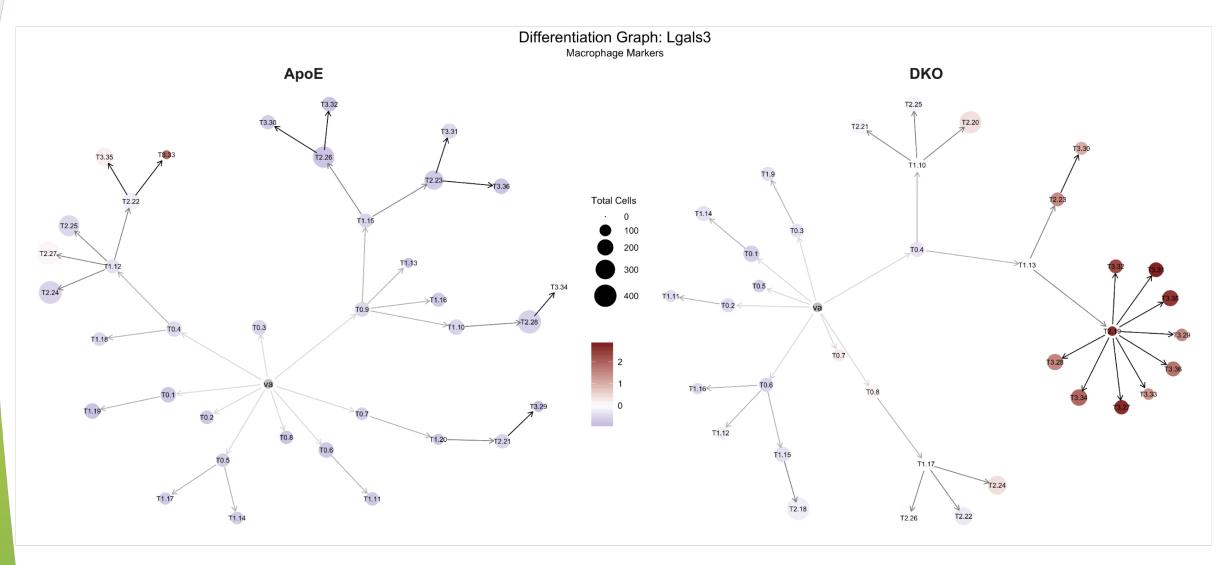




Cxcl1

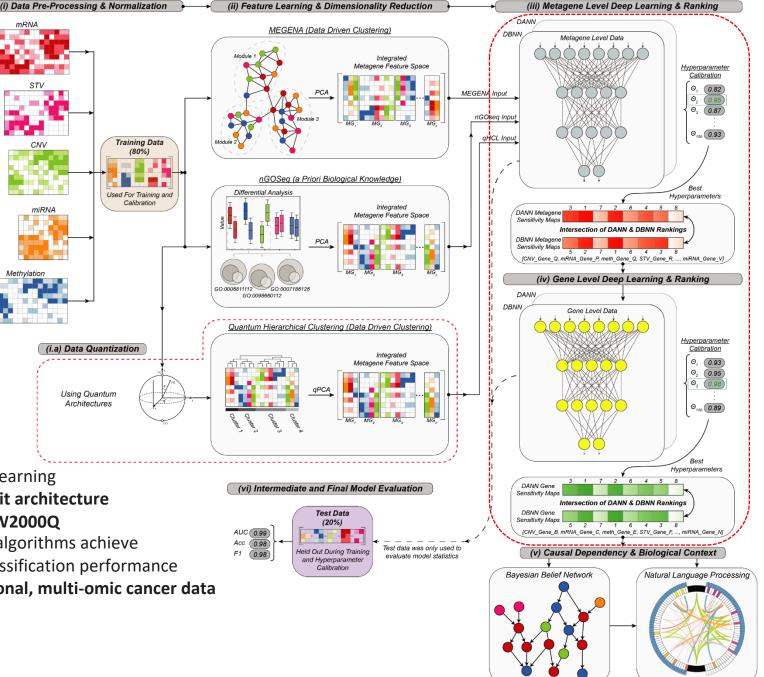




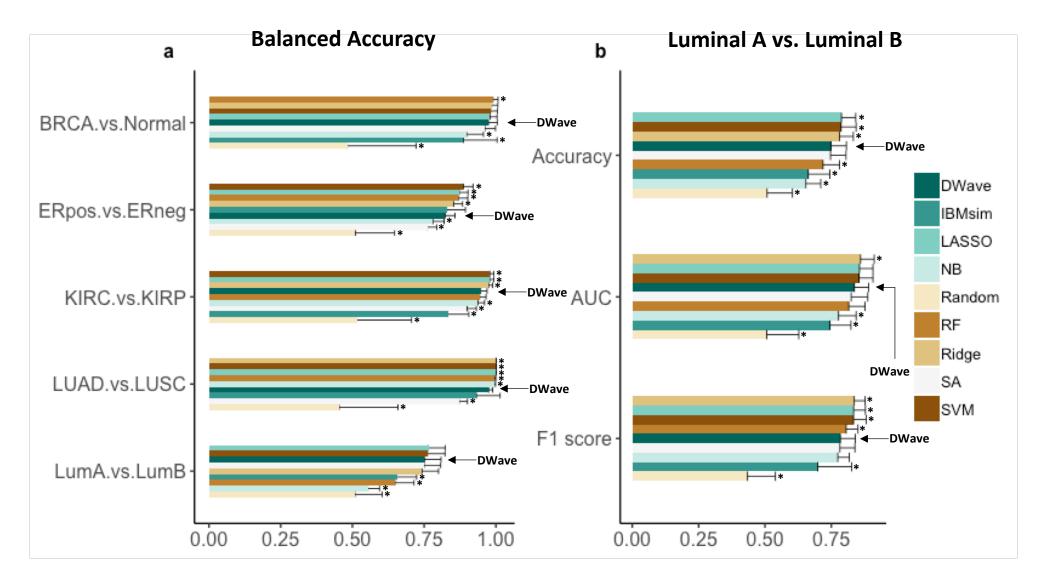


Quantum Machine Learning

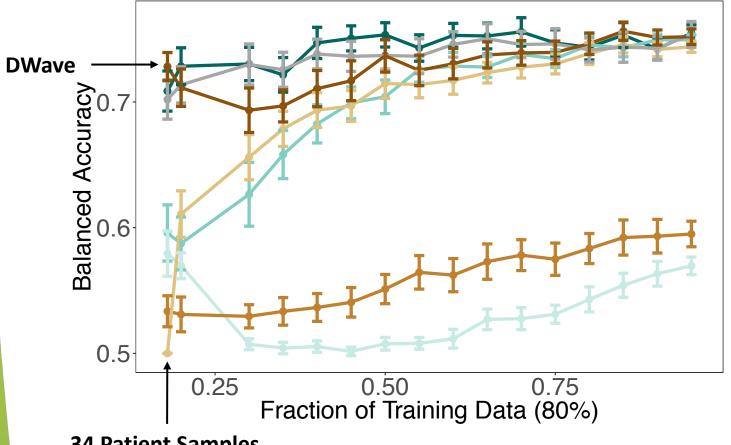
- Quantum computing promises enhanced performance for many classes of problems associated with large datasets.
- We are in the process of replacing algorithmic components of our **Ensemble Computational Intelligence Strategy** with their respective quantum counterparts.
- Our first algorithm was a quantum hierarchical clustering (qHCl), based on a modified
 Grover's algorithm, a quantum
 search algorithm that runs quadratically faster than any equivalent classical algorithm.
- We have now built statistical quantum machine learning classifiers on both IBM's universal quantum circuit architecture and the D-Wave Two X (DW2X) processor and DW2000Q Adiabatic quantum computer. Our D-Wave qML algorithms achieve comparable, and in some cases slightly better, classification performance than their classical counterparts on high-dimensional, multi-omic cancer data from the Cancer Genome Atlas (TCGA).



Binomial Classification of Tumor Molecular Subtypes Quantum Machine Learning



Binomial Classification of Tumor Molecular Subtypes Luminal A vs. Luminal B Human Breast Cancers

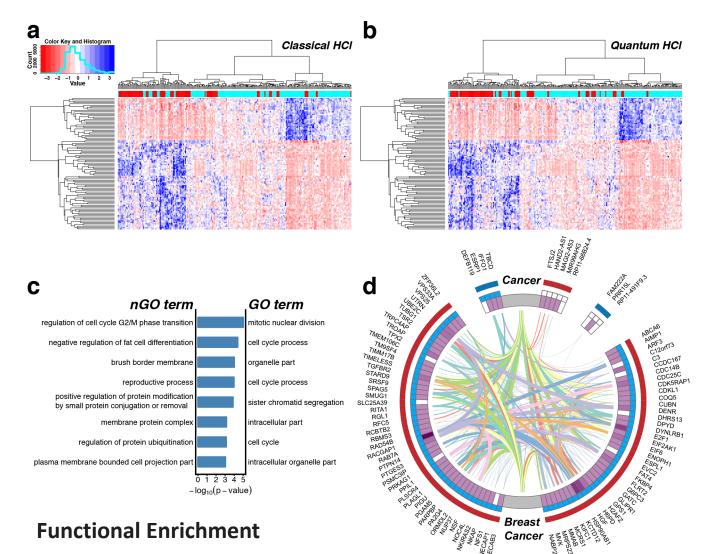


Algorithm				
-	DWave			
-	LASSO			
•	NB			
•	RF			
-	Ridge			
•	SA			
+	SVM			

LumA vs. LumB Status					
Tumor Samples	231				
Luminal A	119				
Luminal B	112				
Train	185				
Test	46				

34 Patient Samples

Binomial Classification of Tumor Molecular Subtypes: Luminal A vs. Luminal B Human Breast Cancers



LumA vs. LumB Status					
Tumor Samples	231				
Luminal A	119				
Luminal B	112				
Train	185				
Test	46				

*Quantum and classical trees are 88% concordant based on the standard Robinson–Foulds metric

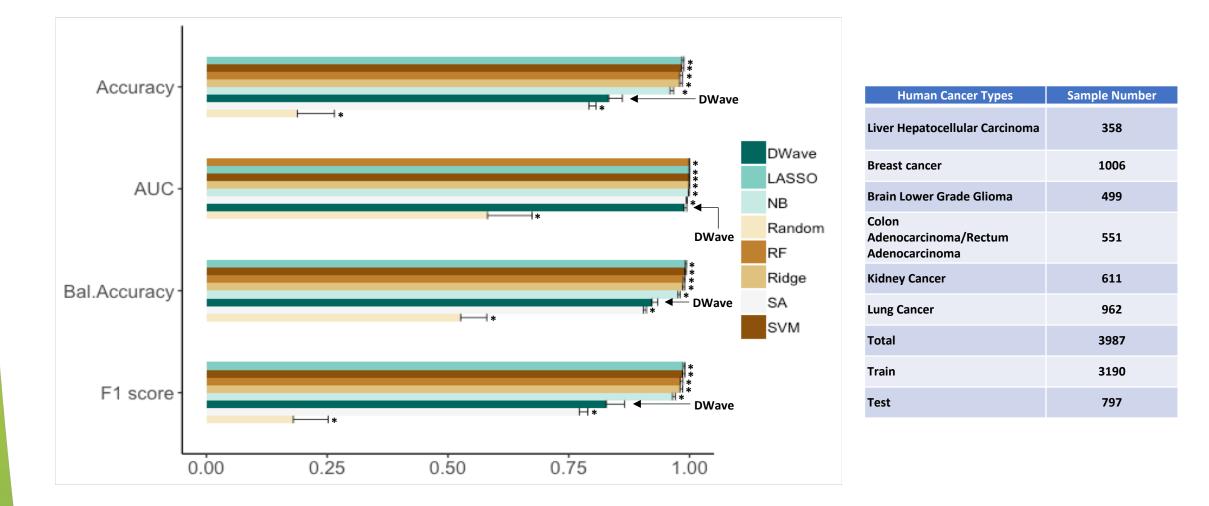
*qHCL - Durr-Hoyer method based on a modified Grover's search algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits

Natural Language Processing

*Outer red band: mrna data *Outer blue band: methylation data *Inner blue band: genes of known function

Multinomial Classification of Human Cancer Types Quantum Machine Learning



Advanced Artificial Intelligence Research Laboratory

Academic and Industry Research Collaborations

Harvard Medical School Professor Chris Walsh Chief of Genetics and Genomics

University of Oxford

Professor Chris Holmes Computational Statistics and Machine Learning

University of Southern California

Professor Daniel Lidar Quantum Computing and Quantum Machine Learning

University of Toronto

Professor Alán Aspuru-Guzik Quantum Chemistry and Chemical Biology

WuXi AppTec Oncology

Fabrice Alphonse

Yale University School of Medicine

Professor Michael Simons Director of Yale Cardiovascular Research Center

Professor Karen Hirschi Yale Cardiovascular Research Center

Acknowledgements

WuXi NextCODE

- Jeff Gulcher
- Richard Williams
- Rob Brainin
- Hákon Guðbjartsson
- Hongye Sun
- Jim Lund
- Shannon Bailey
- Simonne Longerich

WuXi NextCODE Advanced A.I. Research Laboratory

- Chandri Yandava
- Sharvari Gujja
- Joe White
- Sweta Bajaj
- Javier Baylon
- Omar Gamel
- Prasad Reddy
- Jose Malagon Lopez

Boston Children's Hospital Harvard Medical School

- Chris Walsh
- Mike Lodato

Cardiovascular Research Center Yale University Medical School

- Mike Simons
- Pengchun Yu

University of Oxford

Chris Holmes

University of Tennessee

Hao Chen

APPENDIX

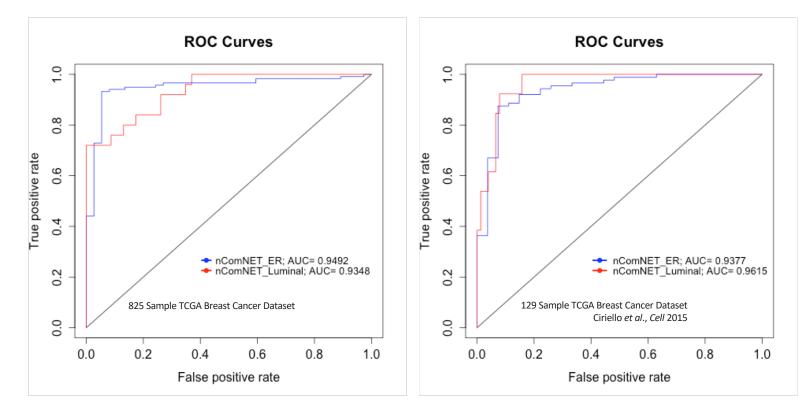
14 DECEMBER | TWO THOUSAND EIGHTEEN

Modeling Human Breast Cancer – High Generalizability

Molecular Subtypes using Somatic Tumor Variants (STVs) and mRNA

Novel deepCODE pathway-based integration approach classifies tumor subtypes and tumor vs. normal at high accuracy

This classification reveals key mutated and expressed genes/pathways.

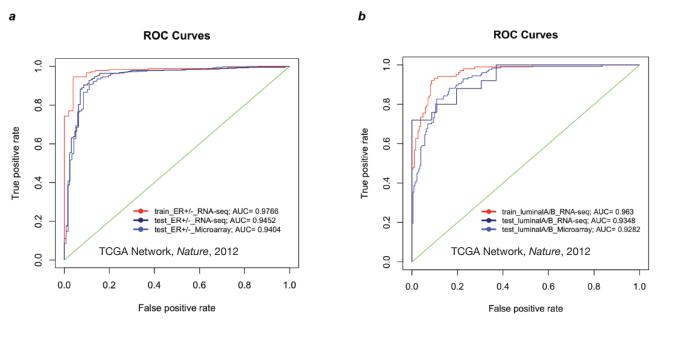


ER- vs. ER+ Breast Tumor Classification with 0.95 accuracy 2 Mutated Pathways (10 genes); 5 Aberrant Expression Pathways (146 genes)

Luminal A vs. B Breast Tumor Classification with 0.94 accuracy 4 Mutated Pathways (172 genes); 8 Aberrant Expression Pathways (72 genes)

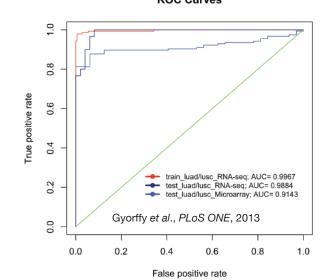
WuXiNextCODE

Cross-Platform Analysis: RNA-seq to DNA Microarray – High Generalizability



ROC Curves

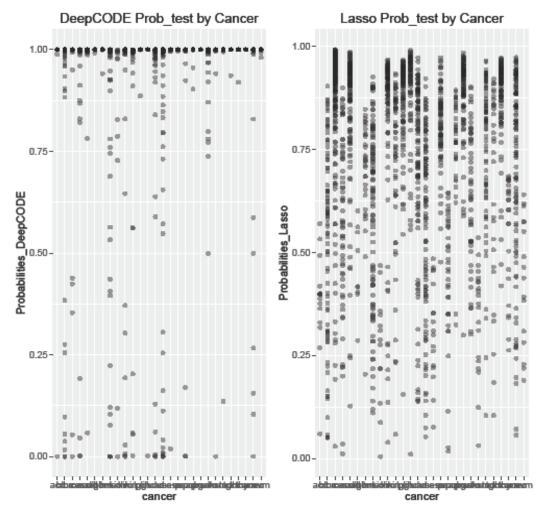
С



- a. ER- vs. ER+ Classification with AUC = 0.95 5 Aberrant Expression Pathways (146 genes)
- b. Luminal A vs. B Classification with AUC = 0.94 8 Aberrant Expression Pathways (72 genes)
- c. LUAD vs. LUSC Classification with AUC = 0.98 9 Aberrant Expression Pathways (60 genes)

Our deep learning approach to classification of TCGA tumor Types is far superior to traditional machine learning methods (LASSO)

DeepCODE Deep Learning vs. LASSO Machine Learning Multinomial Regression Models on 28 TCGA cancer types



True Positive Probability Distributions per Cancer type

Note: deepCODE Model Calls True Positives with far greater confidence

Multinomial Human Cancer Classification: Trained: 7,618 RNA-seq samples; Tested:1,889 RNA-seq samples



Lodato *et al., Science* 2015 Lodato *et al., Science* 2017

NEURODEVELOPMENT

Somatic mutation in single human neurons tracks developmental and transcriptional history

Michael A. Lodato,^{1*} Mollie B. Woodworth,^{1*} Semin Lee,^{2*} Gilad D. Evrony,¹ Bhaven K. Mehta,¹ Amir Karger,³ Soohyun Lee,² Thomas W. Chittenden,^{3,4}† Alissa M. D'Gama,¹ Xuyu Cai,¹‡ Lovelace J. Luquette,² Eunjung Lee,^{2,5} Peter J. Park,^{2,5}§ Christopher A. Walsh¹§

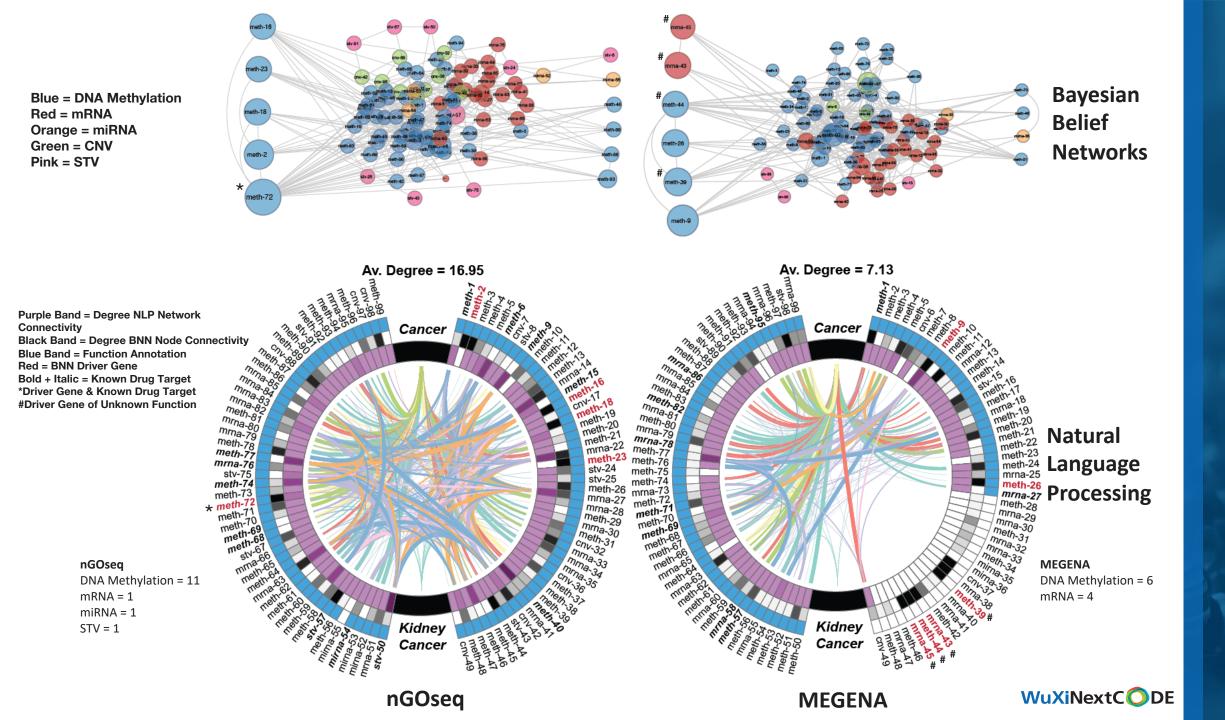
GO:0030030: cell projection organization	
GO:0030554: adenyl nucleotide binding	
GO:0043167: ion binding	
GO:0048666: neuron development	
GO:0031175: neuron projection development	
GO:0007399: nervous system development	
GO:0048812: neuron projection morphogenesis	
GO:0007411: axon guidance	
	10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11}

10¹ 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹² Benjamini-Hochberg-corrected p-value

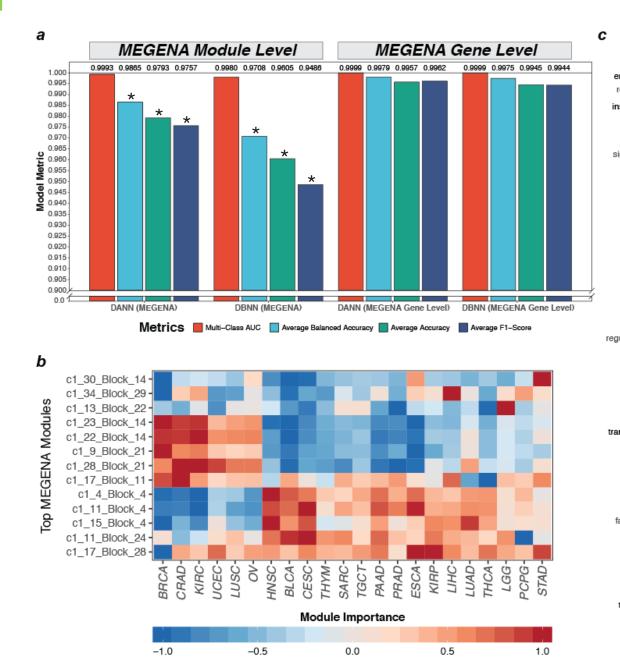
FGF-dependent metabolic control of vascular development

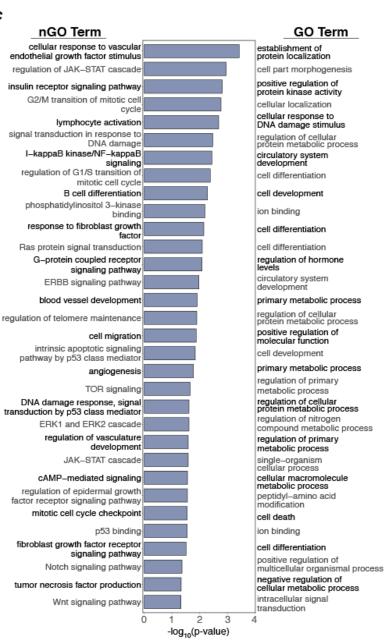
Pengchun Yu¹, Kerstin Wilhelm²*, Alexandre Dubrac¹*, Joe K. Tung¹*, Tiago C. Alves³, Jennifer S. Fang¹, Yi Xie¹, Jie Zhu⁴, Zehua Chen⁵, Frederik De Smet^{6,7}, Jiasheng Zhang¹, Suk-Won Jin^{1,8}, Lele Sun⁹, Hongye Sun⁹, Richard G. Kibbey³, Karen K. Hirschi¹, Nissim Hay¹⁰, Peter Carmeliet^{11,12}, Thomas W. Chittenden⁵, Anne Eichmann^{1,13}, Michael Potente² & Michael Simons^{1,14}

GO Class	Accession Number	nGOSeq Term	List Hits	List Size	Pop Hits	Pop Size	Fisher's Exact	Gene Enrich	%Gene Enrich	Pvalue LogDiff	nGOseq Gene Enrich	GOseq Accession	GOSeq Term
BP	1900744	regulation of p38MAPK cascade	2	63	4	889	0.027	1.72	42.91	0.65	0.33	0007155	cell adhesion
BP	0060055	angiogenesis involved in wound healing	3	20	4	199	0.003	2.60	64.95	0.88	0.25	0001666	response to hypoxia
BP	0001935	endothelial cell proliferation	22	1127	72	7178	0.001	10.66	14.86	0.26	0.25	0044237	cellular metabolic process
BP	0043114	regulation of vascular permeability	2	85	4	868	0.050	1.61	40.21	0.68	0.54	0006629	lipid metabolic process
BP	0010573	vascular endothelial growth factor	3	41	6	488	0.013	2.50	41.60	0.70	0.43	0033993	response to lipid
BP	0071604	transforming growth factor beta production	3	37	8	400	0.022	2.33	29.11	0.21	0.06	2000145	regulation of cell motility
υr	0071004		5	57	0	441	0.022	2.33	23.11	0.21	0.00	2000143	single-organism
BP	0006006	glucose metabolic process	19	576	73	3432	0.028	6.75	9.244	0.64	1.53	0044767	developmental process

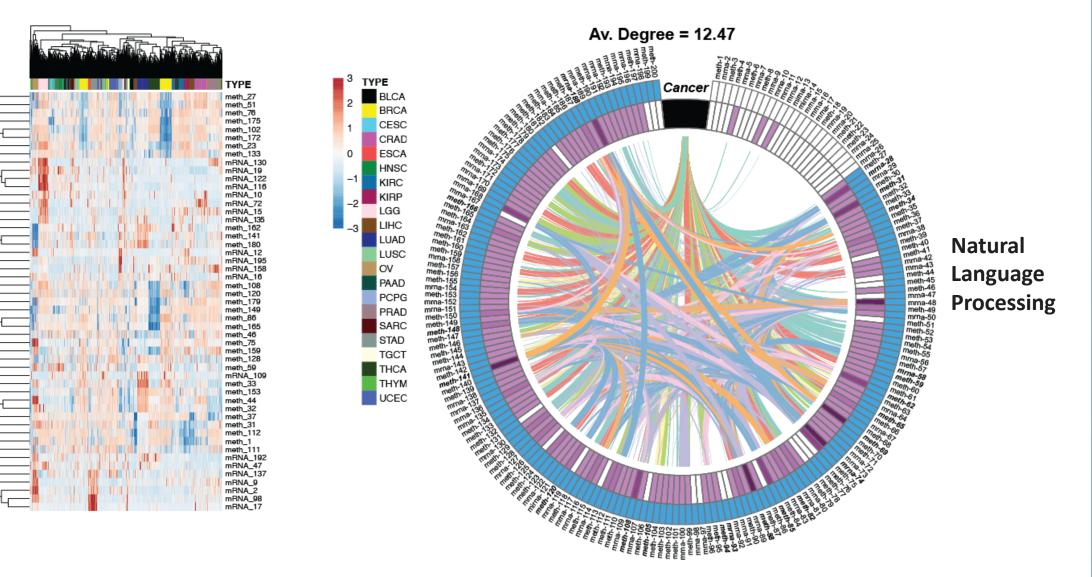


Multinomial Classification of 22 TCGA Cancer Types with Greater than 99.6% Accuracy





Multinomial Classification of 22 TGCA Cancer Types with Greater than 99.6% Accuracy



Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

9

Control vs AD

Z

PET Scans (AV45 + FDG)

Image Data

	Count	DCNN (Test set)		
Samples	326	AUC	0.99	
Alzheimer	144	Accuracy	0.94	
Controls	182			

Integrated Datatypes: Methylation, Expression, Variant Data Count LASSO (Test set) Samples 152 MEGENA nGOSeq MEGENA nGOSeq 36 (29/7) Alzheimer MetaGene MetaGene Gene Gene Controls 116 (93/23) AUC 0.87 0.94 0.98 1 Accuracy 0.83 0.93 0.97 0.93 Megena - Gene Level nGOSeq - Gene Level Non-zero Genes Non-zero Genes 1.00 -1.00 . Methylation: 29 Methylation: 31 Brobabilities Brobabilities 0.50 -0.25 -Expression: 5 labels Expression: 17 labels STV: 7 STV: 10 AD AD CN CN

Molecular Signature

Control vs AD

Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

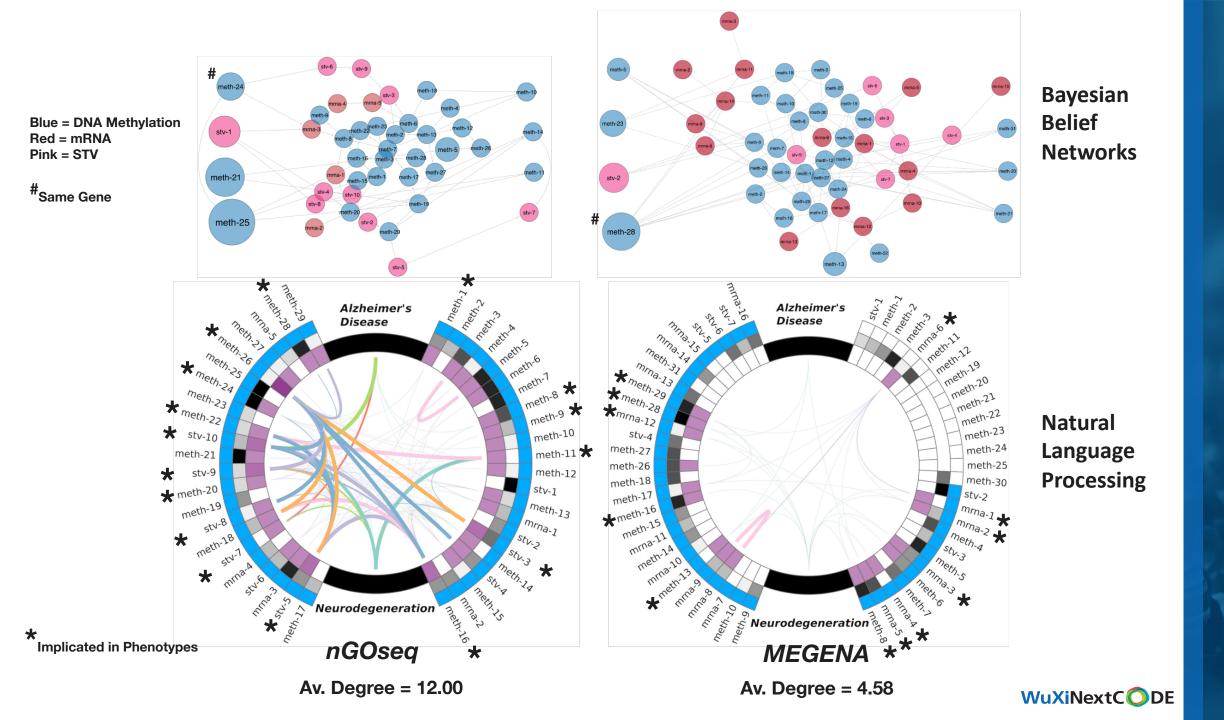
Molecular Signature

Single Datatypes: Methylation , Expression, Variant Data

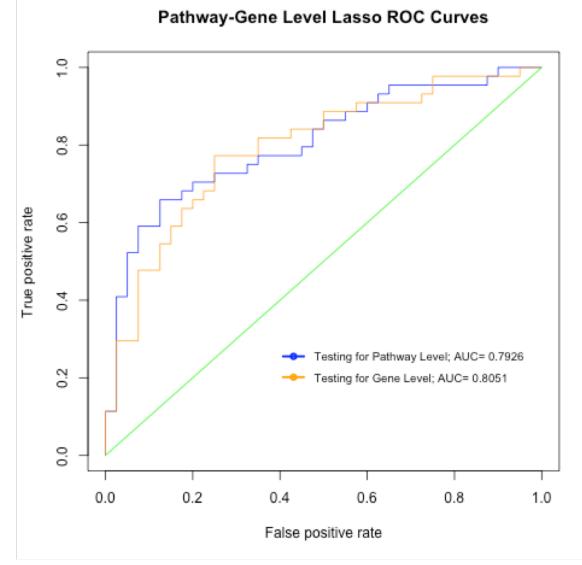
	Count		Methylation Genes	Expression Genes	Variant Genes	
Samples	152	AUC	0.93	0.77	0.80	No Feature
Alzheimer	36 (29/7)	Accuracy	0.90	0.76	0.77	Selection
Controls	116 (93/23)	AD Test Acc	0.57	0.54	0.54	

	MEGENA Feature Selection				
	Methylation Genes	Expression Genes	Variant Genes		
AUC	0.99	0.75	0.75		
Accuracy	0.93	0.73	0.73		
AD Test Acc	0.86	0.64	0.64		

	nGOSeq Feature Selection					
	Methylation Genes	Expression Genes	Variant Genes			
AUC	0.98	0.81	0.75			
Accuracy	0.93	0.73	0.73			
AD Test Acc	0.71	0.64	0.58			



Deep Learning, Machine Learning and Alzheimer Disease (RosMap)



RNA extracted from dorsolateral prefrontal cortex of 724 subjects

Sample set:

AD: 222 [Train: 178, Test: 44] CN: 201 [Train: 161, Test: 40]

Pathway Level Analysis:

Number of Pathways: 3340 Test Accuracy: 72.61 Test AUC: 79.26 Number of Non-Zero Pathways: 76

Gene Level Analysis:

Number of Genes: 342 Genes from 76 Non-zero Pathways Test Accuracy: 72.61 Test AUC: 80.51 Number of Non-Zero Genes: 45

Deep Learning for Chemical Reactions

Modeling Chemical Data

DL models based on different representations of molecules:

Retrosynthesis

Learning how molecules are produced using chemical reaction datasets (~1.1 M chemical reactions from U.S. patents)

				(
		Feature learning	DL Model				
							fication with Highway
	Graph		Graph Convolutional		Count	networks (20% - Test set)
Molecule		G = (E,N)	Networks (GCN)	Product molecules	431485	Accuracy	0.79 (0.12)*
				Chemical reactions for	462		
	SMILES	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	Sequence-to-sequence (seq2seq)	classification			ication with Multiscale 20% - Test set)
						approach	20% - Test set
ом	Fingerprint	0110101 0111010	Highway networks			Accuracy	0.90 (0.08)*
		2048 bits					*s.d. in parentheses

Taking stereochemistry into account

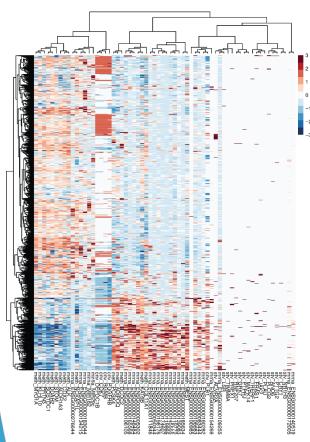
Learning about molecular 3D shape for chemical reaction prediction

Atoms can be arranged differently for same molecule: Atoms can be arranged differently for same molecule: Count Molecules with single chiral center Two configurations: S R

WuXiNextCODE

Modeling Human Breast Cancers Quantum Machine Learning

Classical HCL



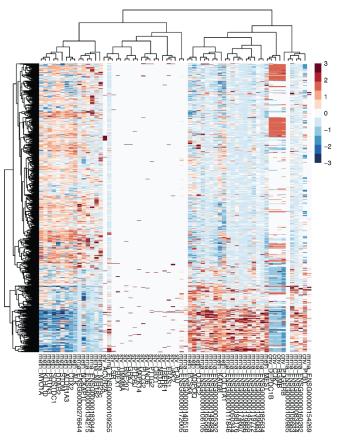
Estrogen Receptor Status					
Tumor Samples	959				
ER Negative	740				
ER Positive	219				
Train	768				
Test	191				

	Performance		
Algorithm	HCL	qHCL	
Clustering (genes)	64	64	
Clustering (sec)*	0.02	10078.30 (2h 48m)	
Cluster Number	8	9	
LASSO Classification Accuracy	0.9215	0.9267	
LASSO ROC AUC	0.945	0.944	
DANN Classification Accuracy	0.9267	0.9267	
DANN ROC AUC	0.943	0.944	

*Quantum and classical trees are 88% concordant based on the standard Robinson–Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover's search algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits



WUXI NEXTCODE ANALYSIS PLATFORM

Clinical interpretation and research in one, scalable platform built for the genome from the ground up

GOR (Genomically Ordered Relational) Database Infrastructure

 For efficient storage and queries for whole genome and whole exome data using the tools listed below

Clinical Sequence Analyzer (CSA)

- Clinical geneticist-friendly tools for germline analysis of large or small families
- Automatic gene carrier analysis for confirmation
- Generate candidate genes from a standard list or with phenotype tools and stratify by variant annotations

Sequence Miner (SM)

- Advanced tool for case-control disease gene discovery or responder nonresponder companion diagnostic discovery
- Additional algorithms for covariate adjustment and pathway enrichment
- Perform phenotype scans and carrier analysis

Tumor Mutation Analyzer (TMA)

 Somatic variant analysis for defining tumor-specific variations and oncology annotations including actionable databases

VGS BVVL

where no causing make with history of hidhood onset of motor neuropathy with limb weakness, respiratory problems due to diaphragm eakness and canaid neuronogathy manifested as optic atrophy, sensorineural dealness, and bubar painy. Affected prob is an affected site with unaffected supers and no family history of disease.

Primary findings relevant to indication for tes

e following pathogenic/Likely pathogenic variant (s) was (were) detected in this individual's DNA. This variant is located in a gene known to be associate with disease. It uud likely explain the indication for testing and may be responsible for this individual clinical presentation.

Variant Summary	,					
Brown Violetto Van Laer Syndrome						
Gene	Variant	Cassification	Inheritance	Zygonity	Parental Origin	
SLCS2A2 NM_024531.4	(?v8:1455842647>C c.10167=C (p.Lev309Pro)	pathogenic	AR	hom	both	

Variant Interpretation

nuch in beit affectes titours, Heerzogopa in texth parents, SCO300 is a parleg to the gree and home as a causative gree in BWC. The packo398m exterior is SCO300 is parled to the text and the second se

Clinical Importance

Brow Video No. Lete prótrom (BVA), somrinne Isoma & Brewn Syndhom, is a zer dispensive disorder dami mitialy duratanteiral by progressive anticipante and anticipante and anticipante and anticipante and anticipante and anticipante anticipante anticipante solid crusin anticipante anticipante and less commonly, ager motor nanora se somerna anticipante anticipante anticipante anticipante (SSG). (1) The sorte of de desse is usual) in motor anticipante and services are been and mitis that in breach and the solid (SSG). (1) The sorte of de desse is usual) in motor desse datas anticipante anticipante anticipante anticipante anticipante (SSG). (1) The sorte of de desse is usual) in motor desse datas anticipante and services have been and mitis anticipante anticipante (SSG). (1) The sorte of de desse is usual) in motor desse datas anticipante anticipante anticipante anticipante (SSG). (1) The sorte of de desse is usual) in motor desse datas anticipante anticipante anticipante anticipante anticipante (SSG). (1) The sorte of de desse is usual) in motor desse datas anticipante anticipante anticipante anticipante (SSG). (1) The sorte of the synthesis anticipantes and services and the sorte have been anticipante anticipante anticipante (SSG). (1) The sorte of the synthesis anticipantes anticipantes

