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1 Introduction
D-Wave’s hybrid solver service (HSS) contains a port-
folio of heuristic solvers that leverage both quantum
and classical solution approaches to solve optimiza-
tion problems much larger than can fit on Advan-
tage™ quantum processors. The quantum processing
unit (QPU) natively solves quadratic unconstrained bi-
nary optimization problems over the Pegasus™ graph
topology [1], while the portfolio of HSS solvers provide
interface support for applications well outside that na-
tive problem formulation. This interface reduces, and
sometimes completely eliminates, the need for users to
translate their application problems into a formulation
that matches the quantum architecture.

Figure 1 illustrates the result of D-Wave’s continu-
ing efforts to expand the variety of problems that
fall within scope of the HSS portfolio. The Binary
Quadratic Model (BQM) and Discrete Quadratic Model
(DQM) solvers read unconstrained quadratic problems
defined on binary variables (that is, taking two val-
ues), and on discrete variables (that is, taking multi-
ple values), respectively. The Constrained Quadratic
Model (CQM) solver adds the capability of specify-
ing linear and quadratic constraints for the quadratic
model. Moreover, this solver accepts problems defined
on binary, integer and, as of May 2022, real variables.1

To our knowledge, this is the world’s first and only hy-
brid solver capable of leveraging quantum computa-
tion to address both discrete and continuous problems.

In this report, we focus on understanding the per-
formance of the CQM solver on a wide variety of
constrained quadratic problems. As D-Wave continues
to update the CQM solver, including algorithmic im-
provements and increasing support for more problem
types, the benchmarking framework used in this report
can be used to quantify the impact of these changes.

This report presents an overview of performance of the
Constrained Quadratic Model solver in the following
sections:

• Section 2 surveys the varieties of problem types
that serve as industry-standard benchmarks.

1Some notational conflict is unavoidable in standard usage:
binary, discrete, and integer variables in computer science are ex-
amples of discrete number domains in mathematics, and real vari-
ables belongs to the continuous number domain.

BQM
binary

DQM
discrete

CQM
constrained
binary
integer
real

Figure 1: The hierarchy of models available in Ocean. The Bi-
nary Quadratic Model and Discrete Quadratic Model are sub-
sets of the more general Constrained Quadratic Model. This
figure originally appeared in [2].

• Section 3 presents details about the releases of the
CQM solver that are compared in this benchmark.

• Section 4 presents the results of the benchmark.

• Section 5 highlights one problem class that bene-
fited from algorithmic improvements to the CQM
solver.

The hybrid solver service is cloud-based and offered
by subscription via the Leap™ web portal; see [3, 4] to
learn more about Leap and the hybrid solver service.

2 Problem Classes for
Understanding Performance

Constrained quadratic models are a large class of mod-
els which can contain binary, discrete, integer, and real
variables. The most general version of the CQM for-
mulation can include interactions between two vari-
ables of any kind. In addition to specifying an objective
function to be optimized, the model can include sev-
eral kinds of constraints which must be satisfied. These
constraints themselves take the form of quadratic mod-
els. The CQM model supports formulation of equal-
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ity and inequality constraints, which may be linear or
quadratic as well as hard (weighted) or soft (weighted).
Constraints can be defined on binary, integer, or contin-
uous variables.2 Samples returned by the CQM solver
are called feasible if they satisfy the constraints pro-
vided; otherwise, they are called infeasible.3

Understanding performance on all CQMs can be diffi-
cult because this problem class is very diverse. Instead,
we can break it up into a menagerie of smaller inter-
related problem classes that resemble specific applica-
tions types. We can use a rough hierarchy of generality
to categorize these kinds of problems, as illustrated in
Figure 2.

Binary Problems Binary quadratic problems are of-
ten used in feature selection, satisfying Boolean ex-
pressions, and quantum simulation. Binary quadratic
problems are closest to the native model supported by
the QPU. In addition, a CQM with binary variables
can be used to represent a model with discrete vari-
ables. Given a discrete variable x, which takes values
in {D1, . . . , Dn}, we can encode the state of x as a set
of n Booleans di which are equal to 1 if x = Di. This is
not sufficient, as x can only take one state at a time, and
so we have to add the constraint that ∑ Di = 1. There-
fore, we also use problems with discrete variables, such
as graph coloring, and give them binary-only formula-
tions.

Integer Problems Integer problems, for which vari-
ables can be assigned multiple ordered values like
0, 1, 2, 3, . . ., are widely used in discrete optimization.
Here we use “integer problem” to include problems
defined on integer and/or binary variables, but not
on real (continuous) variables. Many problems are na-
tively integer, for example, financial problems that in-
volve purchasing whole units. Integer problems are of-
ten also useful for problems with discrete units of time

2Not every possible formulation has historically been supported
by the solver, with real variables being introduced in May of 2022.
Moreover, the solver does not support CQMs where there is a real
variable in a quadratic interaction. Similarly, problems involving soft
constraints can only be solved in versions of the solver introduced
as of November of 2022. Problems with quadratic interactions of real
variables became solvable in January of 2023.

3Because the CQM solver is a heuristic solver, it may return a mix-
ture of feasible and infeasible samples, none of which are guaranteed
to be optimal.

or space, such as in scheduling problems where events
are scheduled in 15-minute intervals. These problems
are naturally integer and not discrete because time and
space are ordered, whereas discrete variables encoded
as binary are unordered. Often, formulations for prob-
lems, like bin packing, can be done using either in-
teger or real variables; however, the choice of which
formulation is more appropriate is determined by the
specifics of a given application. The integer versions of
these problems are created by discretizing the continu-
ous variables, like time or space.

Mixed Integer Problems Mixed integer problems,
which can contain a combination of binary, integer,
and real variables, are the most general types used in
our tests. Models containing real variables are typically
found when the values to be assigned to nodes rep-
resent variables that are naturally continuous, like lo-
cations in space, time, and money (when allowing for
subdividing dollars).

Sourcing We source many of these problems from sev-
eral discrete programming libraries [6–10], which of-
ten feature a variety of variable types, degree, and
sizes of problems. Some libraries, like MINLPLib [6, 7]
have a variety of application-specific problems which
have been collected into benchmarks. Other libraries
are generated based on a single application type, such
as graph coloring [10]. All instances were sourced as lp
or mps files and then converted into a solver-compatible
format using the Ocean™ SDK [4].

We have also developed input generators for satisfia-
bility and circuit satisfiability (used for factoring) in-
puts, which are mainly formulated as binary quadratic
inputs. One benefit of writing problem generators is
the ability to test performance over a variety of input
parameters and formulation strategies, including per-
formance on equivalent formulations. For example we
can construct a Boolean satisfiability problem (x1 ∧ x2)
as an unconstrained CQM Obj = −x1 · x2 or as a con-
strained CQM with Obj = 0 and the constraint x1 · x2 =
1. We can do the same procedure for factoring prob-
lems expressed as multiplication circuits, since these
are a kind of satisfiability problem. We also introduce
offer-allocation problems to the benchmark, which are
binary quadratic constrained problems discussed fur-
ther in Section 5.
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Figure 2: For the various problem classes that were tested, a non-exhaustive set of example application areas as they would be
formulated in the CQM solver. Often, problems can be formulated several ways and the details of the formulation are application
and performance specific. To see some of these examples in practice visit [5].

To achieve a similar diversity of equivalent formula-
tions for problems drawn from benchmarking libraries,
we create equivalent formulations by randomly apply-
ing a “flip” to a constraint x ≥ y ⇒ −x ≤ −y, or
scaling constraints by random positive numbers x ≥
y ⇒ a · x ≥ a · y, a > 0. These augmentations to exist-
ing libraries help provide an even more diverse set of
problems with which to characterize the performance
of the solver. The specific mix of problems has changed
between this publication and the previous one [11] be-
cause of this random element; however the sourcing
has remained constant, unless otherwise noted.

3 Updates to the CQM Solver
To characterize the impact of updates to the CQM
solver available in Leap, we select key releases since
the last publication of this report. 4 Whereas the CQM
solver releases in the previous report [11] focused
on supporting broader classes of problems, the CQM
solver releases in the current report focus on algorith-
mic improvements to existing classes of problems. We
test 6 CQM solver releases: November 2022, December
2022, March 2023, May 2023, June 2023, and July 2023.

4To better understand where these updates to the solver exist in
the product timeline, see [ReleaseNotesDWave].

Because the composition and timing of the benchmark
has changed since the previous report, the earliest ver-
sion of the CQM solver tested in this report is the latest
version tested in the previous report [11]. Although this
does not provide a fully comparable set of benchmarks
across publication dates, the contiguity should provide
a rough comparison across publication dates.

4 Performance of the CQM
Solver

Every release of the CQM solver is based on the same
hybrid quantum-classical workflow, as shown in Fig-
ure 3. The solver has a classical front end that reads
an input Q and (optionally) a time limit T.5 The clas-
sical front end then invokes one or more hybrid heuris-
tic solvers (computation threads) to search for good-
quality solutions to Q.

Each solver contains a classical heuristic module that ex-
plores the solution space, and a quantum module (QM),
which formulates quantum queries that are sent to a
backend Advantage QPU. Responses from the QPU

5If no time limit is provided by the user, a default time that de-
pends on input size is used.
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Figure 3: Structure of the CQM solver in HSS. The front
end (blue) reads an input Q, and, optionally, a time limit T.
The CQM solver invokes some number of heuristic solvers
(threads) that run on classical CPUs and GPUs (teal) and
search for good-quality solutions to Q. Each heuristic solver
contains a quantum module (QM) that formulates and sends
quantum queries to a D-Wave QPU (orange); QPU responses
to these queries may be used to guide the heuristic search or
to improve the quality of a current pool of solutions. This fig-
ure originally appeared in [2].

are used to guide the heuristic module toward more
promising areas of the search space, or to find improve-
ments to existing solutions. Each heuristic sends its
best solutions to the front end before the time limit is
reached, and the front end forwards best results to the
user.

In a production environment, heuristic solvers run in
parallel on state-of-the-art CPU and/or GPU platforms.
These tests were carried out using a “laboratory” ver-
sion of the CQM solver for each update tested. These
versions run on less performant classical hardware, but
allow us to maintain older updates which are no longer
available in production, and to carefully control the
hardware for comparisons. In contrast, the HSS pro-
duction solvers available to the public are deployed for
scalable use in the cloud. Since the hybrid framework
shown in Figure 3 is heavily dependent on the perfor-
mance and scale of hardware, the results of this section
may differ somewhat from those observed in deployed
systems; however, we generally expect the latter to be
more efficient.

4.1 Methodology

Each solver was containerized and run with the con-
temporaneous Ocean software releases where possible,
with small fixes to allow older updates of the solver to
run. The solvers were all given 150 seconds (2.5 min-
utes) to solve each problem using the same hardware

resources and access to the QPU. Each solver returned
an algorithmically determined number of samples, and
the objective value and feasibility of each sample was
calculated.

In this section, we compare the different solver re-
leases using a win-loss criterion. For each problem, the
solver that has the lowest feasible objective value on
any sample is given a “win”, with ties being counted
as a win for both solvers. If none of the solvers have
a feasible objective value, meaning all of the samples
for that problem across all solvers were infeasible, then
the solver with the lowest overall objective value is
counted as a win. This approach aligns with “solution-
to-time framework” adopted by several publicly avail-
able repositories of benchmarks for quadratic solvers
[e.g. 12].

4.2 Results

Figure 4 summarizes the results of running this experi-
ment on the different releases of the CQM solver under
the parameters outlined above.

Of the 2045 binary quadratic problems, the July 2023 re-
lease won 80.0% of problems. The second and third best
solver on binary quadratic problems were June 2023
(71.1%) and March 2023 (62.6%) respectively. All of the
other 3 solvers had at least one win. Of the 80 inte-
ger quadratic problems, the March 2023, May 2023, and
July 2023 releases all won 81.2% of problems. All of the
other 3 solvers had at least one win. Of the 1110 mixed
integer quadratic problems, the July 2023 release won
40.2% of problems. The second and third best solver
on mixed integer quadratic problems were June 2023
(30.5%) and May 2023 (27.5%) respectively. All of the
other 3 solvers had at least one win.

5 Offer Allocation Problems
The algorithmic improvements presented in Section 4
are most concentrated on constrained binary quadratic
models, which are a broad and expressive class of prob-
lems with many applications, as shown in Figure 2.
The applicability of constrained binary quadratic mod-
els to financial services has been a long-standing line
of research, most commonly finding use as a technique
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Figure 4: The percentage of “wins” for each update of the
solver, allowing for ties to be counted for both solvers. A win
is characterized by a lower feasible objective value on the
same problem instance given the same hardware and time
limit. If no feasible objective value is found, then the win is
given to the solver with the lowest overall objective value.

for selecting optimal subsets of securities, predictors,
or products when individual and pairwise information
is known [e.g. 13, 14]. Optimal-selection problems are
ever more ubiquitous, following the continuing rise of
machine-learning based tools in finance, which solve
individual and pairwise information prediction prob-
lems [15, 16].

One powerful example of these trends is the prob-
lem of individualized pricing for consumers, so-called
price discrimination [17]. Price discrimination is often
achieved by having one stated public price but offer-
ing individual consumers discounts or coupons which
lower the individual consumer’s price. Finding the op-
timal mix of discounts or coupons in order to maximize
profitability is an optimal-selection problem, naturally
formulated as a constrained quadratic binary model.

Specifically, offer allocation is the problem of assign-
ing m offers (e.g. discounts, new products, rewards pro-
grams) to n consumers. Each of the m offers can only be
given to a small number of consumers cj, and each con-
sumer can only receive a handful of offers ci. To formu-
late this problem as a CQM, we assign a binary variable
ai,j to each offer-consumer pair. We can then formulate
the constraints on the number of consumers given an
offer as

n

∑
i

ai,j ≤ cj

and similarly, the constraints on the number of offers
given to a consumer

m

∑
j

ai,j ≤ ci .

We can see how to generate these sets of constraints in
the function defined in Example 1 given an array of
the total number of offers per consumer ci (argument
c_consumers) and total offers cj (c_offers). One of the al-
gorithmic improvements to the CQM solver since the
previous report [11] is the handling of these constraint
types more efficiently, which can explain part of the im-
provement in performance on these problems.

So far we have generated the constraints needed to cre-
ate an offer-allocation problem, but we have not con-
sidered optimizing the offers. In order to do that we
must first know the average value of a consumer when
offered a given offer; however, more interestingly we
can optimize based on the average value of a consumer
given any pair of offerings. This is especially useful if

Copyright © D-Wave
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Figure 5: The percentage of “wins” for each update of the
solver on offer-allocation problems tested, allowing for ties to
be counted for both solvers. The 297 problem instances pre-
sented here are a subset of those in 4, specifically every offer-
allocation problem is a binary constrained problem.

we think that offers influence each other. For a con-
sumer i, the average value vi,j,k of a deal mix includ-
ing both offer j and k can be used to create an objective
which optimizes the offer allocation and is given by

n

∑
i

m

∑
j

m

∑
k>j

−vi,j,k ∗ ai,j ∗ ai,k .

In Example 1, we pass in a dictionary with the values of
vi,j,k (argument values). These values would usually be
generated using statistics of previous offer mixes; for
example, using machine learning models of customer
values.

We generate 297 problems instances of this kind with
between 1, 000 and 10, 000 consumers, and include the
problems in the results discussed in Section 4, specifi-
cally in the binary quadratic category. Figure 5 shows
the results on this class of problems across different
solver releases. There is a marked uptick in perfor-
mance over the past two releases, from June 2023 and
July 2023, with the July 2023 solver winning 57.2% of
problem instances.

import dimod

def offer_allocation(

m: int ,

n: int ,

c_consumers: list ,

c_offers: list ,

values: dict):

cqm = dimod.ConstrainedQuadraticModel ()

assignments = {}

for i in range(n):

for j in range(m):

# each offer -consumer pair is a binary

variable

pair = dimod.Binary(

f"consumer_{i}_offer_{j}"

)

assignments[i, j] = pair

# each consumer has limited number of offers

for i in range(n):

cqm.add_constraint_from_comparison(

dimod.quicksum(

assignments[i, j] for j in range(m)

) <= c_consumers[i]

)

# each offer can only be given a limited

number of times

for j in range(m):

cqm.add_constraint_from_comparison(

dimod.quicksum(

assignments[i, j] for i in range(n)

) <= c_offers[j]

)

# maximize the total value of deal mix per

customer offered deals

cqm.set_objective(

dimod.quicksum(

-val*assignments[i, j]* assignments[i, k]

for (i, j, k), val in values.items()

if j > k

),

)

return cqm

Example 1: Creating consumer and offer variables and
constraints using Ocean.

6 Conclusion
To understand the performance of algorithms at the
rapidly advancing frontier of hybrid optimization, it
is necessary to benchmark on a diverse set of prob-
lems. This report puts forward a taxonomy of prob-
lems which represent various real-world and theoret-
ical benchmarks for D-Wave’s CQM solver. Using this
framework, we characterize the overall performance of
the CQM solver’s most recent release versus that of
several previous ones. By comparing the performance
of several recent releases of the CQM solver against
each other, we are able to see the rapid improvement
in performance of each new release compared to the
earlier ones.
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1 C. McGeoch and P. Farré, “Advantage Processor Overview,”

D-Wave Technical Report Series (2022).

2 “Hybrid Solvers for Quadratic Optimization,” (2022).

3 D-Wave Leap, https://cloud.dwavesys.com/leap.

4 D-Wave Ocean Software Documentation, https : / / docs .

ocean.dwavesys.com/.

5 D-Wave Systems Examples, GitHub, https://github.com/
dwave-examples.

6 M. R. Bussieck, A. S. Drud, and A. Meeraus, “MINLPLib—A
Collection of Test Models for Mixed-Integer Nonlinear Pro-
gramming,” INFORMS Journal on Computing 15, 114–119
(2003).

7 S. Vigerske, MINLPLib: A Library of Mixed-Integer and Contin-
uous Nonlinear Programming Instances, (Oct. 14, 2022) https:
//www.minlplib.org/ (visited on 10/22/2022).

8 A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bas-
tubbe, et al., “MIPLIB 2017: Data-driven compilation of the
6th mixed-integer programming library,” Mathematical Pro-
gramming Computation, 10.1007/s12532- 020- 00194- 3
(2021).

9 F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, et
al., “QPLIB: a library of quadratic programming instances,”
Math. Prog. Comp. 11, 237–265 (2019).

10 S. Gualandi and M. Chiarandini, Vertex Coloring - Graph Col-
oring Benchmarks, https : / / sites . google . com / site /
graphcoloring/vertex-coloring (visited on 10/22/2022).
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