
CONTACT

Corporate Headquarters
3033 Beta Ave
Burnaby, BC V5G 4M9
Canada
Tel. 604-630-1428

US O�ce
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Overview

We introduce a problem class with two attributes crucial to the eval-
uation of quantum annealing processors: local ruggedness (i.e., tall,
thin energy barriers in the energy landscape) so that quantum tun-
neling can be harnessed as a useful resource, and global frustration so
that the problems are combinatorially challenging and representative of
real-world inputs. We evaluate the new 2000-qubit D-Wave quantum
processing unit (QPU) on these inputs, comparing it to software solvers
that include both GPU-based solvers and a CPU-based solver which
is highly tailored to the D-Wave topology. The D-Wave QPU solidly
outperforms the software solvers: when we consider pure annealing
time, the D-Wave QPU is three to four orders of magnitude faster than
software solvers in both optimization and sampling evaluations.
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Summary

Context

A recent Google study [1] compared a D-Wave 2X quantum processing unit (QPU) to two
classical Monte Carlo algorithms: simulated annealing (SA) and quantum Monte Carlo
(QMC). The study showed the D-Wave 2X to be up to 100 million times faster than the
classical algorithms.

The Google inputs are designed to demonstrate the value of collective multiqubit tunnel-
ing, a resource that is available to D-Wave QPUs but not to simulated annealing. But the
computational hardness in these inputs is highly localized in gadgets, with only a small
amount of complexity coming from global interactions, meaning that the relevance to real-
world problems is limited. Later work [2] compared D-Wave 2X performance on these
instances to a wider selection of algorithms. HFS, a specialized combinatorial algorithm,
handles the gadgets of the Google problems using localized brute force. Because there is
only a small amount of computational hardness from the global interactions, HFS solves
the Google problems with relative ease.

Contributions

In this study we provide a new synthetic problem class that addresses the limitations of the
Google inputs while retaining their strengths. We use simple clusters instead of more com-
plex gadgets and more emphasis is placed on creating computational hardness through
global interactions like those seen in interesting real-world inputs. The logical spin-glass
backbones used to generate these inputs can be solved in polynomial time [3]. However,
for general heuristic algorithms that are unaware of the planted problem class, the frustra-
tion creates meaningful difficulty in a controlled environment ideal for study.

We use these inputs to evaluate the new 2000-qubit D-Wave QPU. We include the HFS
algorithm—the best performer in a broader analysis of Google inputs [2]—and we include
state of the art GPU implementations of SA and QMC. The D-Wave QPU solidly outper-
forms the software solvers; when we consider pure annealing time (computation time), the
D-Wave QPU reaches ground states up to 2600 times faster than the competition (see Figure
3). In the task of zero-temperature Boltzmann sampling from challenging multimodal in-
puts, the D-Wave QPU holds a similar advantage and does not see significant performance
degradation due to quantum sampling bias.

Our input class has the additional benefit of parameter-tunable ruggedness of the associ-
ated energy landscapes. Ruggedness correlates with classical hardness, and more rugged
inputs can benefit more from quantum tunneling. We show that quantum annealing shows
greater resilience to ruggedness than simulated annealing, and the more closely a classical
Monte Carlo algorithm approximates quantum annealing, the better it handles increasing
ruggedness (see Figure 4).
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1 Introduction
Quantum annealers are designed to take advantage of quantum tunneling to find good
solutions to hard optimization problems. When constructing a family of synthetic inputs
to test the potential of a quantum annealing platform, one should therefore ensure that
the inputs a) are such that solvers can benefit from quantum tunneling, and b) are hard
optimization problems with global frustration.

For a solver to benefit from quantum tunneling, the energy landscape associated with the
input must have tall, thin energy barriers. For an input to be computationally hard, the
input must have constraints that interact with each other in nontrivial ways.

Quantum processing units (QPUs) developed by D-Wave Systems that use the quantum
annealing algorithm have been commercially available since 2011. These QPUs solve Ising
model inputs defined on the underlying working graph of the chip. There have been var-
ious efforts to evaluate the performance of the D-Wave systems using synthetic inputs
generated randomly from different distributions, or input classes.

This study has two main contributions: to propose a new problem class ideal for evaluating
D-Wave QPUs, and to use this problem class to evaluate the 2000-qubit D-Wave QPU.

1.1 Proposing a new problem class

Previous evaluations of D-Wave QPUs have used problem classes that benefit either too
little or too much from quantum tunneling to be ideal for evaluating quantum annealers.

On one side of this spectrum we have problems such as random unstructured±1 problems
on the Chimera topology native to D-Wave QPUs. These were used by Rønnow et al. [4]
in their evaluation of the D-Wave Two QPU in 2014, but they are now known [5] to lack a
finite-temperature phase transition, meaning that quantum tunneling is unlikely to play a
significant role when solving them.

On the other side of the spectrum, Denchev et al. [1] recently introduced an input class
designed to benefit immensely from quantum tunneling. We refer to these inputs as Google
problems. Their study showed a massive speed increase (up to 100 million times faster) of
a D-Wave 2X system over simulated annealing (SA) and quantum Monte Carlo (QMC),
also known as simulated quantum annealing. This provided strong evidence for the ability
of quantum annealing to leverage quantum tunneling in a computationally relevant way.
However, the spin-glass backbones of the Google problems are easy to solve, meaning
that a) the problems have limited relevance to real-world problems, and b) certain cluster-
detecting algorithms can solve them with relative ease [2].

In this study we provide a problem class that aims to retain the advantages of Google
problems while being more reflective of real-world problems. They are more reflective
of real-world problems because, rather than relying too heavily on finely-tuned gadgets,
they derive much of their computational hardness from larger spin-glass backbones with
planted frustration.

Our problems are synthetic and are easy to solve using knowledge of the problem class.1

1For example, the super-spin heuristic [2] that relies on hard-coded knowledge of clusters would be far faster

Copyright © D-Wave Systems Inc.
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More specifically, since the logical problems are Ising models on a planar lattice without
fields, they are solvable in polynomial time [3]. However, frustration in the logical prob-
lems creates meaningful difficulty for heuristic methods that are unaware of the planted
problem class. Further, the inputs have properties such as tunable ruggedness that make
them useful for the evaluation of quantum annealing and classical approximations thereof.
In this way, they are similar to Kauffman’s NK model that has proved very useful in the
analysis of evolutionary algorithms [6–8].

1.2 Evaluation of the 2000-qubit D-Wave QPU

We use this new problem class to evaluate the latest-generation D-Wave QPU. We measure
its performance in absolute terms and we analyze its response to the ruggedness parame-
ters of the problem class.

The software competition we consider is much stronger than that considered by Denchev
et al. [1], and includes GPU implementations of SA, QMC, and SVMC, and also includes
Selby’s implementation [9, 10] of the Hamze-de Freitas-Selby (HFS) algorithm [9, 11]. In the
study of Mandrà et al. [2] that used a wide array of algorithms to solve Google problems,
Selby’s implementation of HFS was the fastest software solver in terms of both scaling and
absolute speed.

We find that the D-Wave QPU is able to find ground states up to 2600 times faster than the
software competition. We also consider the problem of sampling from ground states and
find that the D-Wave QPU maintains a similar advantage and does not struggle to find a
diverse set of optimal solutions.

The remainder of the paper is organized as follows. In Section 2 we provide a description
of the 2000-qubit D-Wave system and a history of D-Wave QPUs. In Section 3 we present
the problem class analyzed in this paper and discuss the concept of ruggedness and its rel-
evance to optimization problems. In Section 4 we discuss the software solvers used in our
evaluations, as well as notable solvers that were not suitable. In Section 5 we present our
experimental results on optimization. In Section 6 we present our experimental results on
sampling from ground states. In Section 7 we argue that constant pre-factors are important
and that scaling is not the only thing we should be interested in; this argument is based
on power consumption of classical algorithms. In Section 8 we provide further discussion
and conclude the paper.

2 D-Wave quantum processing units
We start with an overview of D-Wave design features and introduce notation that will be
used throughout. For details about underlying technologies see Bunyk et al. [12], Dickson
et al. [13], Harris et al. [14], Johnson et al. [15] or Lanting et al. [16].

than the software solvers we consider. However, such heuristics do not generalize to other problem classes and it
would not make sense to include them as competition solvers.

Copyright © D-Wave Systems Inc.
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2.1 Ising minimization

D-Wave annealing-based QPUs are designed to find minimum-cost solutions to the Ising
minimization (IM) problem, defined on a graph G = (V, E) as follows. Given a collection
of fields h = {hi : i ∈ V} and couplings J = {Jij : (i, j) ∈ E}, assign values from {−1,+1}
to n spin variables s = {si} so as to minimize the energy function

E(s) = ∑
i∈V

hisi + ∑
(i,j)∈E

Jijsisj. (1)

The spin variables s can be interpreted as magnetic poles in a physical particle system;
in this context, negative Jij is ferromagnetic and positive Jij is antiferromagnetic, the optimal
solution is called a ground state, and nonoptimal solutions are excited states. IM instances
can be trivially transformed to Quadratic Unconstrained Boolean Optimization (QUBO)
instances defined on integers s = {0, 1}, or to Maximum Weighted 2-Satisfiability (MAX
W2SAT) instances defined on Booleans s = {true, false}, all of which are NP-hard.

2.2 Chimera topology

The native connectivity topology for the D-Wave QPU is based on a C16 Chimera graph
containing 2048 vertices (qubits) and 6016 edges (couplers).

A Chimera graph of size Cs is an s× s grid of Chimera cells (also called unit tiles or unit
cells), each containing a complete bipartite graph on 8 vertices (a K4,4). Each vertex is
connected to its four neighbors inside the cell as well as two neighbors (north/south or
east/west) outside the cell: therefore every vertex has degree 6 excluding boundary ver-
tices.

In this study, as in others, we vary the problem size using square subgraphs of the full
graph, from size C4 (128 vertices) up to C16 (2048 vertices). Note that the number of prob-
lem variables n = 8s2 grows quadratically with Chimera size. The reason we measure
algorithm performance as a function of the Chimera size and not the number of qubits is
that problem difficulty tends to scale exponentially with the Chimera size, i.e., with the
square root of the number of qubits, since the treewidth of a Chimera graph Cs is linear in
s [17, 18].

Because the chip fabrication and trapped magnetic flux leave some small number of qubits
unusable, each QPU has a specific hardware working graph H ⊂ C16. The qubit yield—the
fraction of qubits that are operational—is typically around 98% for the 2000-qubit D-Wave
system whereas 95% was typical for the D-Wave 2X. The working graph used in this study
has 2035 working qubits out of 2048.

2.3 Quantum annealing

D-Wave QPUs solve Ising problems by quantum annealing (QA) in the form proposed by
Kadowaki and Nishimori [19]. The QA algorithm is implemented in hardware using a
framework of analog control devices to manipulate a collection of qubit states according to

Copyright © D-Wave Systems Inc.
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a time-dependent Hamiltonian shown below.

H(t) = A(t) · Hinit + B(t) · Hprob. (2)

QA carries out a gradual transition in time t : 0 → ta, from an initial ground state in
Hinit, to a state described by the problem Hamiltonian Hprob = ∑i hiσ

z
i + ∑ij Jijσ

z
i σz

j . The
problem Hamiltonian matches the energy function (1), so that a ground state forHprob is a
minimum-cost solution to E(s).

QA is closely related to adiabatic quantum computing (AQC). The AQC model of compu-
tation was proposed by Farhi et al. [20] who showed that if the transition is carried out
slowly enough the algorithm will find a ground state (i.e., an optimal solution) with high
probability.

Theoretical guarantees about solution times for quantum algorithms (found in [20]) assume
that the computation takes place in an ideal closed system, perfectly isolated from energy
interference from ambient surroundings. The 2000-qubit D-Wave chip is housed in a highly
shielded chamber and cooled to near absolute zero; nevertheless, as is the case with any
real-world quantum device, it must suffer some amount of interference, which has the
general effect of reducing the probability of landing in a ground state. Thus, theoretical
guarantees on performance may not apply to these systems. We consider any D-Wave
QPU to be a heuristic solver, which requires empirical approaches to performance analysis.

The D-Wave QPU studied here contains 2035 active qubits (quantum bits) and 5912 active
couplers made of microscopic loops of niobium connected to a large and complex analog
control system via an arrangement of Josephson Junctions. Thermometry on the refrigera-
tor of the D-Wave QPU and fits of single qubit measurements to a thermodynamic model
indicate that T . 15 mK. When cooled to temperatures below 9.3 K, niobium becomes a
superconductor and is capable of displaying quantum properties including superposition,
entanglement, and quantum tunneling. Because of these properties, the qubits on the chip
behave as a quantum mechanical particle process that carries out a transition from initial
state described byHinit to a problem state described byHprob [13, 16, 21].

2.4 Modeling performance

Given input instance (h, J), a D-Wave computation involves the following steps.

a. Program. Load (h, J) onto the chip; denote the elapsed programming/initialization
time ti.

b. Anneal. Carry out the QA algorithm. Anneal time ta can be set by user to some value
5 µs ≤ ta ≤ 1000 µs.

c. Read. Record qubit states to obtain a solution; denote the elapsed readout time tr.

d. Repeat. Repeat steps b and c k times to obtain a sample of k solutions.

We define sample time ts and total time T as follows:

ts = (ta + tr) (3)

T = ti + k ts.

Copyright © D-Wave Systems Inc.
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For the D-Wave system studied in this paper, the median programming time ti is 9.5 ms
and the median readout time tr is 123 µs.

In this study, both for software solvers and for the D-Wave QPU, we typically report an-
nealing time rather than total time. Annealing time is the measure of the algorithm proper,
and measuring total time often obscures trends in data. Scaling plots are particularly sus-
ceptible to this because the overhead of programming time makes scaling—typically pre-
sented on a semilog plot—look totally flat except for an uptick at the very largest problem
sizes. Further, we are most interested in the future potential of D-Wave QPUs, and we
expect that programming time and readout time will be reduced to small fractions of their
current values; minimum annealing times will similarly be reduced, allowing us better
control over the algorithm parameters. For reference, since many people will be interested
in total wall clock time, rather than annealing time, a 1000 times speedup over software
solvers in annealing time, typical for the D-Wave QPU in this study, translates roughly to
a 30 times speedup in total wall clock time including programming and readout.

System characteristics of D-Wave QPUs such as yield can vary within a generation. If we
compare this specific 2000-qubit D-Wave system to the specific D-Wave 2X QPU studied in
2015 [22], programming time has decreased by 20%, readout is three times faster, and yield
has improved from 95% to 99%.

3 Frustrated Cluster Loop problems

3.1 Ruggedness and clusters

Ruggedness is a feature of certain optimization problems—more specifically their energy
landscapes—characterized by tall energy barriers and many local optima [23, 24]. Typi-
cally, rugged problems are harder to solve, particularly with Markov chain Monte Carlo
(MCMC) methods [25, 26]. In the late 1980s, when ruggedness was first being explored
in the context of evolutionary biology and bio-inspired computing, Kauffman’s NK model
was put forward as a model with tunable ruggedness inspired by genetic fitness functions
under varying degrees of epistasis, or how many other genetic loci affect the fitness contri-
bution of a given locus [6–8]. The tunable ruggedness of the NK model has proved very
valuable in the study of optimization heuristics, particularly evolutionary algorithms [27].

Closely related to ruggedness is the analysis of spin overlap, in which landscape features
are inferred from the distribution of overlap of two random states sampled from the Boltz-
mann distribution [28, 29]. Tall, thin peaks in the spin overlap distribution tend to corre-
spond to tall, thin energy barriers; the presence of these features correlates not only with
ruggedness and classical hardness, but also with applicability of quantum annealing, since
quantum tunneling is likely to be a useful computational resource in the presence of these
tall, thin barriers. Zhu et al. [30] have used spin overlap features to predict whether a
problem can be solved by QA more efficiently than by SA, showing promising preliminary
results for optimization problems such as weighted partial MAX-2SAT, minimum vertex
cover, satisfiability, graph partitioning, circuit fault diagnosis, and certain spin-glass in-
stances [30, 31]. This work points to the potential of quantum annealers to have a place in
portfolio solvers [32] and hybrid algorithms running on heterogeneous computing systems

Copyright © D-Wave Systems Inc.
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alongside CPUs, GPUs, and other coprocessors [33, 34].

To induce ruggedness using tall, thin energy barriers, Denchev et al. [1] used ferromag-
netically coupled unit tiles as clusters. Flipping such a cluster in the absence of fields or
external couplings involves jumping over or tunneling through an energy barrier that is
16 Ising units high and has a width of 8 in Hamming space. Denchev et al. [1] actually go
beyond using single-tile clusters and use two-tile gadgets studied previously by Boixo et
al. [21]. This gadget is made up of two clusters that form a deceptive trap to draw annealers
into a local minimum using local fields; annealers must then go over or through an energy
barrier to reach the gadget’s ground state.

Instead of using two-cluster gadgets, we simply use single-cell ferromagnetic clusters to
induce ruggedness, leaving us with a simpler problem class.

3.2 FCL problem generation

We create local ruggedness by treating unit cells of the Chimera graph as ferromagnetically-
coupled clusters. We create global frustration by joining these clusters together using a
problem generated on the logical graph of clusters. This creates an energy landscape that
is macroscopically interesting and in which the clusters induce wells separated by tall, thin
energy barriers.

The logical graph of clusters is a square lattice, with a logical 16 × 16 lattice of clusters
spanning the working graph of a 2000-qubit D-Wave QPU.2 The problems we generate on
the logical graph are frustrated loop problems, constraint satisfaction problems first used in
the evaluation of D-Wave QPUs by Hen et al. [35] and modified to allow precision limits
by King et al. [36].

We refer to the final inputs as frustrated cluster loop (FCL) problems. For a given Chimera
graph GC that may or may not have missing qubits or couplers, an FCL problem is gen-
erated from three parameters, α (the clauses-to-variables ratio), ρ (the range, or precision),
and R ≥ ρ (the ruggedness) as follows:

a. Define each unit cell as a logical spin if it has no missing qubits or couplers. Use c(v)
to denote the logical spin index corresponding to qubit v.

b. Wherever all four couplers connecting two logical spins are present, define these cou-
plers as a logical coupler.

c. Define the logical graph GL as the graph comprising the logical spins and logical
couplers.

d. Generate a range-bounded frustrated loop problem Hamiltonian (hL, JL) on GL using
parameters α and ρ as per King et al. [36] (note that hL is the zero vector).

2Note that a 16× 16 logical lattice is significantly larger than the largest logical lattice, 4× 4, of the Google
problems considered by Denchev et al. [1]—their two-tile gadgets take up more space than our one-tile clus-
ters and the D-Wave 2X has a smaller working graph than the 2000-qubit D-Wave system. These larger logical
graphs in the problems we consider mean that the spin-glass backbones of these problems are significantly more
computationally challenging.

Copyright © D-Wave Systems Inc.
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Figure 1: Logical problem difficulty as measured by expected samples to solution for simulated
annealing. Error bars show the 95% confidence intervals for the medians, grouped over α and ρ.
Difficulty is maximized at α = 0.65 for precision 3, α = 0.75 for precision 4, α = 0.8 for precision 5,
and α = 0.85 for precision 6.

e. Define the native Chimera Hamiltonian (hC, JC) with hC as the zero vector and JC as:

JC(u, v) =

{
−1, if c(u) = c(v)

1
R · JL(c(u), c(v)), otherwise.

It is worth repeating that these Hamiltonians have no fields (i.e., hL and hC are both zero
vectors). Note also that in-tile couplings in JC are all−1 and inter-tile couplings take values
in

{j/R | j ∈ {−R,−R + 1, . . . , R}} .

Since we ensure that ρ ≤ R, and ρ ≥ |j| for any logical coupling j, all couplings in JC are in
the range [−1, 1]

The logical frustrated loop problems may be disconnected and have multiple components;
we reject such disconnected inputs at generation time.

While these problems are large enough to span the entire working graph of the latest
D-Wave QPUs, the repetition code inherent in logical couplers and spins makes them rela-
tively robust to analog errors [37].

3.3 Problem class parameters

The FCL problem class has three parameters: the clauses-to-variables ratio α, the range ρ,
and the ruggedness R. We would like to restrict our experiments to the most interesting
region of the parameter space.

First we aim to determine the value of α that maximizes the difficulty of the logical prob-
lem. If α is too low, a problem is underconstrained and is easy to solve. If α is too high, the
planted solution is expressed too strongly and the problem’s features approach those of a
ferromagnet, making it easy to solve. The difficulty of the logical problem depends only
on α and ρ, not on R. For various values of ρ, we perform a sweep of α to determine the
value that maximizes the hardness of the logical problem (see Figure 1).

Copyright © D-Wave Systems Inc.
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The impacts of ρ are more nuanced. First, the value of ρ provides an upper bound on the
limit of α because packing in more loops eventually raises the maximum coupler range.
Second, for a fixed value of α, problems with a lower ρ value have their loops spread out
more evenly over the logical spins. Finally, for the native problem, coupler values are
scaled down by a factor of R ≥ ρ so that inter-tile couplings are in the range [−1, 1] (in-tile
couplings are always −1). Thus higher values of ρ constrain R to be higher, and make
problems more locally rugged relative to the global Hamiltonian. In Section 5, we attempt
to deconvolve the impacts of ρ and R.

The ability to tune the ruggedness of the inputs by varying R, either by specifying R = ρ
and varying ρ, or by varying R independently, gives FCL problems an additional degree
of utility, particularly when assessing the value of quantum tunneling and the potential of
quantum annealing. Varying ρ and specifying R = ρ makes problem generation simpler
by reducing the number of free parameters whereas fixing ρ and varying R allows us to
isolate the impact of ruggedness without altering the complexity of the logical problem.

3.4 Con�rming correlation between ruggedness and classical
hardness

We expect to see a positive correlation between ruggedness and classical hardness. Here
we characterize classical hardness using the decorrelation time of an MCMC procedure. To
validate this assumption we measure the decorrelation time for a parallel tempering (PT)
procedure that uses the Metropolis algorithm in combination with the standard replica
exchange rule [38]; we use the autocorrelation of temperature as our measure of decorrela-
tion [39]. For more details of this method, see Appendix A.

Figure 2 illustrates the relationship between ruggedness and classical hardness. Confirm-
ing our intuition, FCL problems with greater ruggedness are characterized by greater clas-
sical hardness.

4 Software solvers
The four software solvers we consider are GPU implementations of SA, QMC, and SVMC,
and Selby’s CPU implementation of HFS [9, 10].

Recent studies of D-Wave QPUs have not included GPU-based software solvers despite the
fact that SA is very amenable to GPU implementation [40]. The addition of GPU solvers is a
significant raising of the bar in terms of software competition, and means that solvers that
can be implemented on GPUs have taken a leap forward relative to solvers that cannot.
Run on modern hardware, our GPU-based algorithm implementations are roughly 1000
times faster than the corresponding single-core CPU implementations.

Mandrà et al. [2] analyzed the performance of a diverse set of solvers on the inputs of
Denchev et al. [1]. However the lack of GPU implementations of these solvers means
that most are unlikely to be competitive in an absolute sense. Indeed, of the three classes
of solvers that they study, only sequential algorithms, which they find to have the worst
performance, have the massive parallelizability and low memory requirements that make
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Figure 2: Box plots showing ruggedness versus classical hardness. We hold ρ and α fixed at 3 and
0.65, respectively, and vary the ruggedness R of the native Chimera problem. At each value of R
we generated 100 instances; points indicate outliers. Classical hardness is measured using the au-
tocorrelation of temperature. There is a clear positive correlation between ruggedness and classical
hardness.

efficient GPU implementations possible. It is also possible to implement SA in a field-
programmable gate array (FPGA), but the additional speedup over GPU implementation
is limited and generally not worth the increased cost of hardware.

In Appendix B we give further details of the software solvers and parameterizations we
used. We also discuss algorithms we omitted because of prohibitive runtimes.

5 Optimization
We measure the expected time to solution (TTS) of different solvers on the inputs, calcu-
lated as

TTS =
time per anneal

ground state probability
.

We consider only annealing times and exclude programming and readout times from our
analysis as these are not part of the algorithms proper.

For a given value of ρ, we choose α to maximize the difficulty of the logical problem (see
Figure 1). For each selection of ρ and R, we generate 100 FCL problems at each problem
size and solve each problem with each solver.
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Figure 3: Time to solution for D-Wave and software solvers with range values ρ ∈ {3, 4, 5, 6}. For
each value of ρ, α is chosen to maximize logical hardness. Shown are median values (over 100 inputs
at each size) with 95% confidence intervals.

5.1 Varying ruggedness via logical complexity

In our first experiment, we vary ρ and set R = ρ. In this case the only free parameter ρ
controls both the ruggedness and the logical complexity of the inputs. Time-to-solution
plots are shown in Figure 3. At the largest problem size, the D-Wave QPU is three orders
of magnitude faster than the fastest software solver for each value of ρ. D-Wave’s speedup
over software peaks at 2600 times for ρ = 4.

As ρ increases, the impact of local ruggedness increases as the logical Hamiltonian is com-
pressed relative to the local wells induced by the clusters. The performance of SA drops
off sharply while the performance of DW and QMC declines gracefully. The performance
of HFS decreases only very slightly. HFS is not affected by the local ruggedness because
it is tailored to the Chimera topology and uses updates that contain entire clusters; the
performance degradation is due to the slight increase in logical problem hardness.

All solvers except HFS have strictly convex scaling curves because the anneal lengths are
optimized for the largest problem size and are too long for the smaller problems. HFS does
not use fixed-length anneals and ends up using shorter anneals on smaller inputs.

Though true scaling is masked by the inability to optimize parameters for smaller inputs [4,
41], we note that the performance of the D-Wave QPU scales at least as well as the software
solvers between the two largest problem sizes.

5.2 Varying ruggedness by scaling

In our second experiment, we fix ρ = 3 and vary the ruggedness R. This keeps the logical
complexity constant, allowing us to isolate the impact of ruggedness on the various solvers.
Here we consider only the largest problem size having a 16× 16 logical lattice.

Consistent with our findings when varying ρ, tuning the ruggedness directly by varying
R increases difficulty dramatically for simulated annealing and less so for other solvers
(see Figure 4). Excluding HFS, whose behaviour is constant in this example, the work
required by a solver essentially scales according to its quantumness. The D-Wave QPU is
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Figure 4: Ruggedness (increasing from left to right) versus relative work for various solvers. Relative
work for each solver is calculated as TTS divided by median TTS at R = 3.0. The solvers have no-
tably different responses to increasing ruggedness, with SA struggling the most, followed by SVMC,
then QMC, then the D-Wave QPU. HFS deals with these energy barriers using exponential brute
force; therefore the parameter R does not affect its performance. Markers indicate medians (over 100
inputs) and error bars indicate 95% confidence intervals for the median.

most capable of dealing with ruggedness. QMC—the most faithful classical simulation of
quantum annealing—comes next, followed by SVMC, which is a mean-field approximation
to QMC. Bringing up the rear is SA, a simulation of a fully classical process.

The improved scaling (versus ruggedness) of QMC over SVMC indicates that crucial in-
formation is being lost in the mean-field approximation. The improved scaling of QA (i.e.,
the D-Wave QPU) over QMC may indicate that QMC is failing to faithfully simulate the
dynamics of the QA processor, or it may simply be an artifact of our inability to use faster
D-Wave anneals. This bears further investigation using future D-Wave QPUs with faster
annealing times, again utilizing the tunable ruggedness of FCL problems.

6 Sampling
The ability of an Ising solver to sample diverse optima has both practical and theoretical
importance. Ground state sampling in combinatorial problems is the basis for construction
of space-efficient SAT-based membership filters [42, 43]. The associated complexity class,
#P —the counting analog of NP—has been the subject of extensive research in theoretical
computer science since the 1970s [44]. Sampling from the Boltzmann distribution, in which
states with equal energy are sampled with equal probability, is of particular interest in
machine learning. Boltzmann samples are used to train Boltzmann machines, a task known
to be both hard and useful [45].

While machine learning applications typically depend on finite-temperature Boltzmann
sampling, using near-optimal states as well as optimal states, we focus on zero temperature
sampling to simplify our investigation. This saves us from having an additional input
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parameter β—the inverse temperature—that we would have to either set arbitrarily or
determine empirically. Empirical estimation of β can be challenging [46] and basing the
target β on the output of a solver would arguably give that solver an unfair advantage.

6.1 Sampling from all valleys

The expected time required for a solver to find all ground states of a problem is known,
both in the equiprobable case and the biased case [47]. In the case of an Ising spin problem,
ground states often lie in connected valleys in Hamming space, and given one ground state
in the cluster it is easy to find the rest. We therefore adopt a more practical metric based on
the time required to sample all valleys of ground states.

In ground states of FCL problems, all clusters have their spins in agreement; therefore the
distance between any two ground states in the native Hamming space is a multiple of 8.
However, ground states can be adjacent (i.e., differ by a single spin) in the logical space. We
define a valley as a set of ground states that are connected in the logical Hamming space.
While it is nontrivial to move from one state to another in the same valley because of the
single tall, thin energy barrier, it can still be done with a modest amount of postprocessing.
We also note that, since FCL problems do not have fields, ground states come in antipodal
pairs,3 and by extension so do valleys. We treat each pair of antipodal valleys as a single
valley since it is trivial to move from one to the other.

With valleys defined in this way, we define the time-to-all-valleys (TTAV) metric as the
expected amount of annealing time required to draw at least one sample from each valley.
This metric captures the hardest part of sampling from these distributions—finding ground
states in every mode—and ensures a diverse set of solutions. With at least one sample
from each valley, it is possible to find all ground states using only a modest amount of
postprocessing. The TTAV metric is most meaningfully interpreted relative to TTS since
hitting valleys directly depends on hitting ground states.

6.2 Mining for interesting valley structure

Sampling from all valleys is not always much harder than finding a single ground state—an
input may have only a single valley or may have valleys that are all very close in Hamming
space. We wish to generate inputs with multiple valleys that are well-separated. Sampling
from distributions with multiple, well-separated valleys is particularly hard [48] and has
important applications such as classification using deep Boltzmann machines [49].

Because we define valleys as clusters of ground states in the logical space, analyzing the
valley structure of an input is tractable. The largest logical graphs are 16× 16 lattices hav-
ing treewidth 16, so solving a logical problem using dynamic programming and returning
some fixed number of ground states typically takes less than a second. This allows us to
mine for inputs having interesting valley structure.

We quantify interesting valley structure using the distribution of spin overlap P(q) [28,
29] at zero temperature, i.e., for two ground states sampled uniformly with replacement,

3For Hamiltonians with no fields, flipping all spins of a state does not change the energy. Therefore the an-
tipode (negation) of any ground state is also a ground state.
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what fraction of spins do they have in common? The random variable P(q) takes values
in the range [−1, 1]. For inputs without fields the distribution is symmetric about zero; we
can therefore consider the distribution of the absolute value P(|q|). We define the mean
overlap as the expectation of P(|q|). Inputs with mean overlap near 1 tend to resemble
ferromagnets—if there are multiple valleys they will be close together. Inputs with lower
mean overlap tend to have valleys that are well-separated.

Inputs that are hard to sample from have multiple valleys that are well-separated. We mine
for such inputs as follows. First we reject any input with more than 1000 ground states, as
these slow down our analysis and may be too easy. Second, we reject any input that does
not have at least 4 valleys since we want valley collection to be nontrivial. Finally, we reject
any input with a mean overlap of 0.7 or higher since we want valleys to be well-separated.

6.3 Sampling results

We generated problems at the 16× 16 lattice size with α = 0.85 and ρ = R = 6 and mined
them for interesting valley structure as described above. We generated 50,000 inputs and
rejected all but 74. This gave us an acceptance rate of roughly 0.15% of inputs. We sought
to answer the question, after x seconds of annealing, what fraction of the valleys has each
solver seen? For each problem we drew a number of samples according to the solver as
follows:

D-Wave QPU: 100,000 samples at 5 µs (in batches
of 100 per spin-reversal transform)

SA: 100,000 samples

QMC: 5000 samples

HFS: 5000 samples

6.3.1 Time to all valleys

Results for the TTAV metric are shown in Figure 5. The 2000-qubit D-Wave QPU is the
fastest of the solvers, hitting all valleys in a median time of roughly 30 ms. The fastest
software competition was HFS, which hit all valleys in a median time of roughly 30 s.

In certain situations quantum annealing in the transverse-field Ising model is subject to
inherent sampling bias [50–53], although that does not prove to be a significant problem
here. While the slope of the D-Wave curve is slightly less steep than the HFS curve, indi-
cating that its samples might be less diverse, the D-Wave QPU still manages to outperform
the competition by about three orders of magnitude.

6.3.2 KL-divergence of valley distributions

The TTAV results shown in Figure 5 fail to address a specific fear—that in a significant
minority of inputs there are valleys that the D-Wave QPU would be simply unable to find
due to quantum sampling bias. To address this, we calculate for each (solver, problem) pair
the KL-divergence between empirical valley distributions and exact valley distributions
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Figure 5: Time to all valleys (TTAV) for various solvers. The x-axis shows elapsed annealing time
and the y-axis shows the fraction of valleys that a solver has hit up to that point in time. Solid lines
show medians (over 74 inputs) and dashed lines show the 25th and 75th percentiles.

(i.e., relative valley sizes). KL-divergence is an asymmetric measure of the distance between
two probability distributions; we calculate it such that it is infinite if the solver fails to see
all valleys, i.e.,

KLD = ∑
valleys v

P(v) log
P(v)
P̂(v)

,

where P(v) is the true Boltzmann probability of valley v and P̂(v) is the sample estimate of
P(v), conditioned on samples being ground states. This KL-divergence measure includes
two types of error. First, there is a distributional error, since each solver samples from a
distribution that differs from the Boltzmann distribution. Second, there is a sample size
error, since our sample estimate has finite size and therefore differs from the solver’s true
distribution. In this context it is appropriate to include both types of error.

Figure 6 shows histograms of KL-divergence for the different solvers. For these FCL prob-
lems, fears of valleys suppressed by quantum sampling bias are unfounded. The D-Wave
QPU has a superior KL-divergence distribution than any of the software solvers even when
annealing for three orders of magnitude less time. On the single input for which the
D-Wave KLD was infinite because at least one valley was never seen, it was also infinite
for all other solvers.

6.3.3 Raw error on model marginals

The TTAV metric and valley distributions can be thought of as representing what sample
quality would look like with postprocessing. We would also like a more raw metric that
does not have this implicit postprocessing. For this we consider marginals of the zero-
temperature Boltzmann distribution. Specifically, we consider the spin-spin expectations,
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Figure 6: KL-divergence histograms. Shown are the empirical distributions (out of 74 inputs) of
the KL-divergence achieved by each solver in estimating the valley distributions. Where the value is
infinite, the solver failed to see one or more of the valleys. The D-Wave QPU had the best performance
in this metric—even with three orders of magnitude less annealing time—followed by HFS, then
QMC, then SA.
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Figure 7: Elapsed annealing time versus L1 error of marginal estimation for various solvers. Solid
lines show medians (over 74 inputs) and dashed lines show the 25th and 75th percentiles. The
D-Wave QPU achieves the same error as software solvers in roughly three orders of magnitude less
time.

i.e., for each coupler, what is the expected product of the two incident spins in the zero-
temperature Boltzmann distribution? The L1 error on these marginals (i.e., the empirical
estimates of spin-spin expectations minus true expectations) is a well-established metric of
interest in the study of undirected graphical models (see, e.g., [54]).

Figure 7 shows the decay in error as more samples are taken. We measure errors in the
logical space, so couplers within a cluster are ignored. Again, the D-Wave QPU is roughly
three orders of magnitude faster than the fastest software solver. We expect that the error
on marginals will decay to a certain point, then plateau, with the level of the plateau corre-
sponding to the bias of the solver. As with the TTAV data, potential concerns about the bias
of quantum annealers do not seem to play out here. The L1 error of the D-Wave QPU is still
decaying after 100,000 samples; at this point in time (0.5 s) the D-Wave QPU has achieved
a median error of less than 1%, a value that software solvers fail to reach in 100 s to match.

7 Power analysis
While much discussion of D-Wave QPUs has centered around various forms of quantum
speedup [2, 4], the focus on scaling behavior alone ignores current pain points of high-
performance computing (HPC) and hyperscale cloud computing. One of the most pressing
concerns for HPC is energy consumption.

The US Department of Energy’s Exascale Computing Initiative has the stated goal of de-
ploying an exascale supercomputer—one capable of 1 exaflops, or 1018 floating point op-
erations per second—that draws only 20–30 MW of power [55]. This translates to an effi-
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ciency of up to 50 gigaflops per watt. By contrast, the world’s most powerful supercom-
puter as of 2017—the Sunway TaihuLight—performs 93 petaflops at an efficiency of 6.1
gigaflops per watt excluding cooling power and 2.2 gigaflops per watt including cooling
power [56].

Including the cooling, TaihuLight requires 42 MW of power. The average hydroelectric fa-
cility in the US produces 57 MW of power. Using the average price for industrial power in
the US which is approximately $600,000 per year per MW, the operating costs are stagger-
ing.

More efficient computation is needed and can be achieved using specialized coprocessors.
As an example we consider the NVIDIA DGX-1 [57], a highly optimized GPU server capa-
ble of 170 teraflops4 that draws 3.2 kW of power for an efficiency of 53 gigaflops per watt.
More efficient computation comes at the expense of generality; for example, it is impossible
to run the HFS algorithm on an NVIDIA DGX-1 efficiently, if at all.

If we go to an even more highly-specialized coprocessor, the D-Wave QPU, the benefits in
terms of energy efficiency can be massive. In this study the D-Wave QPU scales similarly
to QMC and solves problems 10,000 times faster than QMC run on an NVIDIA GTX 1080.
Extrapolating based solely on flop rate and computation time, this would be equivalent
to roughly 500 NVIDIA DGX-1 servers.5 The power draw of the D-Wave system is under
25 kW whereas 500 NVIDIA DGX-1 servers would draw 1.6 MW—roughly as much as 1300
American households [58]. The gap shrinks significantly if we include programming and
readout time for the D-Wave QPU, but it would still be on the order of 10 times faster than
an NVIDIA DGX-1.

In this study HFS has been more energy efficient than QMC because a) it is faster than
QMC, and b) it was run on a single CPU core drawing 20 W rather than on a GPU draw-
ing 180 W. Considering pure annealing time, HFS is roughly on par with the 2000-qubit
D-Wave QPU in terms of ground state throughput per watt. However, we have noted that
HFS is not future proof against denser topologies [1].

Almost all of the power drawn by D-Wave systems is used by the dilution refrigerator.
This has remained constant since the introduction of the first generation of D-Wave sys-
tem in 2011 and is expected to stay constant as computing power scales with successive
generations of QPU.

8 Conclusions
We have introduced a class of synthetic inputs on which to evaluate the performance of
annealing-based QPUs, specifically the QPUs developed by D-Wave. This problem class
is more representative of real-world problems and provides an alternative to the Google
problems of Denchev et al. [1], which were more highly tuned to highlight the utility of

4The NVIDIA DGX-1 achieves this flop rate for half-precision 16-bit floating point operations. Reducing pre-
cision in exchange for faster operations is often beneficial in machine learning.

5This back-of-the-envelope calculation of ground state throughput rate favors classical solvers for two reasons.
First, it is valid only in the case where we have a large number of independent jobs to run in parallel. In practice,
parallelizability across devices will be limited by the number of concurrent jobs that can be run since all of the
algorithms we consider are dominated by sequential loops. Second, our calculation ignores communication time
between devices, though in this case we would not expect that to be dominant.
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quantum tunneling.

The D-Wave QPU is up to 2600 times faster than all software solvers considered and typ-
ically on the order of 1000 times faster at the largest problem size. These software solvers
now include GPU implementations of SA, QMC, and SVMC as well as a CPU implemen-
tation of HFS, making the competition much stronger than that analyzed by Denchev et
al. [1]. The set of software solvers we used was representative, but not exhaus-tive—in
particular, we hope to include more of the solvers used by Mandrà et al. [2] in future stud-
ies.

These inputs have tunable ruggedness controlled either by the range parameter ρ or by the
scaling parameter S. Of particular interest is the fact that QMC performed better relative to
SA when the ruggedness is increased, and physical quantum annealing performed better
still.

We also evaluated the 2000-qubit D-Wave QPU on the task of zero-temperature Boltzmann
sampling, i.e., sampling uniformly from ground states. While concerns have been raised
that quantum and analog sampling bias might make it difficult for quantum annealers to
sample from Boltzmann distributions [50–52], there was little evidence for such a struggle
in this study. In several metrics considered, the 2000-qubit D-Wave QPU maintains its
speed advantage of roughly three orders of magnitude and provides sample diversity that
is as good as, or better than, the software competition.
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A Calculation of decorrelation
The parallel tempering implementation we use to measure decorrelation time is parame-
terized by a sequence of n increasing inverse temperatures βi ∈ [0, β = 3]. A replica sample
is initialized randomly for each temperature. The replicas are then iterated, undertaking
a random walk in temperature space combined with MCMC sweeps controlled by the en-
ergy landscape6. Inference on the lower temperature distributions is hardest. The quality
of inference is limited by the time scale associated with the temperature random walk. For
a sample to decorrelate at low temperature on a practical time scale, the random walk must
pass through a high temperature state (where decorrelation is fast) and return to the low
temperature state. The time scale is approximated by the integrated autocorrelation of the
temperature index [39].

In our setup, temperatures are selected independently for every instance, with β spanning
[0, 30] such that the replica exchange rate is equalized at close to 40% (no lower than 33%,
no higher than 50%). Equalization of exchange rates is an intuitive and well-studied heuris-
tic for temperature selection and is optimal in special cases [59].7 Equalization of exchange
rates is achieved heuristically by iterating PT, refining the temperature set by linear interpo-
lation of the log empirical exchange rates. To measure autocorrelation time, we undertake
a long run of 600,000 sweeps, discarding a conservative portion (10%) of the initial sam-
ples which we took as sufficient for burn in (this assumption was tested self-consistently).
We then extract the integrated autocorrelation time from the empirical values by an initial
sequence estimator [60], we average over the autocorrelations on the n available chains to
reduce noise.

6At β = 0, the hottest replica, we replace the sample with a new random uniformly drawn sample on each
iteration so that decorrelation is perfect.

7We note that, as would be true in studying any problem class, better choices for temperatures and transition
operators can lower the autocorrelation times relative to those presented.
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B Details of software solvers

B.1 Included software solvers

Our experiments and analyses focus on four algorithms commonly used in comparisons
with D-Wave QPUs—three that are highly amenable to GPU implementation and one that
is highly tailored to the Chimera topology.

B.1.1 Simulated annealing

Simulated annealing [61] is a simulation of thermal annealing that is widely used as an
optimization algorithm. It is the classical analog to quantum annealing. Since simulated
annealing is a simple algorithm with very low memory requirements and a high degree of
parallelizability, it is ideal for implementation on a GPU.

B.1.2 Quantum Monte Carlo

Quantum Monte Carlo, also known as simulated quantum annealing, is a classical ap-
proximation to quantum annealing. For the algorithm to work efficiently on a GPU, we
implement the discrete time variant of QMC and fix the number of Trotter slices at 64 so
that a worldline can be packed as bits in a word.

While the continuous time variant of QMC is a more faithful simulation of quantum an-
nealing, in particular serving as a bias-free sampler that approaches the quantum Boltz-
mann distribution in the limit, it has been shown that discrete time QMC can have superior
performance as an optimizer [62].

B.1.3 Spin vector Monte Carlo

Spin vector Monte Carlo (SVMC), also known as the O(2)-rotor model, is a mean-field ap-
proximation to QMC. SVMC can be thought of as falling between SA and QMC. Proposed
for use as an approximation to D-Wave QPUs by Shin, Smith, Smolin, and Vazirani [63],
it is also known as the SSSV algorithm. We use a GPU implementation of SVMC that is a
minor modification of our implementation of SA.

B.1.4 Hamze-de Freitas-Selby

The Hamze-de Freitas-Selby (HFS) algorithm optimizes by repeatedly optimizing the spins
in a low-treewidth induced subgraph of the input, subject to the rest of the input being
fixed. The subgraph over which the input is optimized changes at each step. The HFS
algorithm is a greedy search algorithm in which reassignment of many variables is consid-
ered at once. We used Selby’s implementation [9, 10] that is heavily tailored to the Chimera
topology; we modified this solver to return each stopping state for consistency with the
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other heuristic solvers. We note that the HFS algorithm cannot be efficiently implemented
on GPU because the memory requirements are too high.

B.2 Excluded software solvers

In addition to these four algorithms, we considered several other software solvers that
were prohibitively slow; due to limited time and resources it was not feasible to perform
the long software runs needed to optimize parameters and determine ideal performance.

B.2.1 Nontailored HFS

We tested an implementation of HFS that, rather than using subgraphs tailored to the Chi-
mera topology, is topology-agnostic and generates subgraphs dynamically. This nontai-
lored version of HFS performed far worse than Selby’s tailored implementation, to the
point where we failed to hit ground states in the largest problems. The failure of this al-
gorithm highlights the extent to which Selby’s HFS implementation, and specifically the
hardcoded subgraphs to update, exploit the sparsity and modularity of the Chimera topol-
ogy [2]. It is very likely that this type of exploitation will be impossible in future quantum
annealer topologies [1].

B.2.2 Wol� cluster Monte Carlo

The Wolff algorithm [64] dynamically detects clusters of spins that should be flipped to-
gether. We used a modified implementation that considers the potential change in energy
when deciding whether to flip a cluster, similar to Venturelli et al. [65]. This algorithm
would, at first glance, be ideal for FCL problems due to the crucial role of clusters. How-
ever, finding clusters is slow and our CPU implementation was not competitive with other
solvers. Note that the Wolff algorithm is not particularly amenable to GPU implementa-
tion; such implementations exist for topologies such as lattices [66] but they achieve only
modest speedups over CPU implementations.

B.2.3 Parallel tempering

Parallel tempering runs multiple replicas of a Monte Carlo simulation at different tem-
peratures in parallel, and can exchange information between replicas according to certain
exchange rules. It is the algorithm of choice for approximately calculating features and
statistics of an energy landscape when exact calculation is prohibitive. Our GPU imple-
mentation used 64 replicas, with replicas of a spin packed bitwise into a word, similar to
our implementation of QMC. Parallel tempering is more powerful than simulated anneal-
ing, but in this case proved to be uncompetitive due to the increased cost of each step.
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Resource CPU GPU

Model Intel®Xeon®CPU
E5-2643 v3

NVIDIA®GeForce®

GTX 1080
Clock rate 3.4 GHz 1.6 GHz

Cores 6 2560
Concurrent workers 6 1

Power 135 W 180 W

Table 1: Specifications for classical processors used for software solvers.

B.2.4 PT-ICM

In vanilla parallel tempering, replica exchange steps are combined with single-spin Monte
Carlo updates. However, replica exchanges can be combined with other types of updates.
Isoenergetic cluster move (ICM) updates can be combined with replica exchange and sim-
ple Monte Carlo updates. This variant was introduced by Swendsen and Wang [67] in their
original parallel tempering paper and is sometimes called the PT-ICM algorithm. We im-
plemented PT-ICM as described by Zhu et al. [68] and found that its scaling was similar
to Selby’s implementation of HFS, but absolute performance was an order of magnitude
slower even when using a precomputed ideal temperature ladder (i.e., set of β values)
specific to each input.

The advantage that PT-ICM has over Selby’s implementation of HFS is that PT-ICM de-
tects clusters dynamically and is not tailored to the underlying topology. Because of this,
there may be a misconception that PT-ICM will be future proof against denser quantum
processor topologies. However, problems on denser topologies will have smaller site-
percolation thresholds [69], and the effectiveness of PT-ICM depends crucially on a large
site-percolation threshold [68]. Thus increased processor density will erode the compu-
tational value of cluster updates and consequently the advantage of PT-ICM over vanilla
PT.

B.3 Classical hardware

Table 1 contains the specifications for the classical processors used. CPU algorithms were
run single-threaded on one core each; multiple workers used cores concurrently for inde-
pendent jobs. GPU algorithms are highly parallelized and each GPU job uses the entire
GPU.

B.4 Parameter tuning

For the D-Wave QPU, optimal performance at all problem sizes was achieved at the mini-
mum allowed annealing time of 5 µs. It therefore makes sense to optimize the parameters
of software solvers only at the largest problem size; optimizing on a per-size basis would
only make scaling look worse for the software solvers. Since we cannot properly optimize
the performance of all solvers at all problem sizes, we focus on results at the largest prob-
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lem size and take scaling results with a grain of salt.

For SA, we chose values of β that increase linearly from 0.01 to 3 and used 105 sweeps. For
QMC, we used a fixed β of 30 and 104 sweeps with the transverse field A(t) decreasing
linearly from 1 to 0 and the longitudinal field B(t) increasing linearly from 0 to 1. For
SVMC we again used a β of 30 and the same annealing schedule, but used 105 sweeps.
These values of β were chosen to optimize performance. For HFS, we used Selby’s strategy
GS-TW2 [9]. For the D-Wave QPU, we use the minimum annealing time of 5 µs.
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