Item Listing Optimization Considering Diversity in E-Commerce Websites

Naoki Nishimura
Recruit Communications Co., Ltd.
nishimura@r.recruit.co.jp
Recruit Group provides various kinds of online services - from job search to online shopping - across the globe.

Examples: Travel reservation, Restaurant reservation, Housing information sites, etc…

Today’s topic is the use case of D-Wave on the hotel reservation site “Jalan”
 – https://www.jalan.net/en
Outline

• Problem Setup: How to list items on an e-commerce website
• Problem Formulation
• Numerical Experiments
• Summary
Outline

• Problem Setup: How to list items on an e-commerce website
• Problem Formulation
• Numerical Experiments
• Summary
How to list items on an e-commerce website

The problem is how to list items on an e-commerce website

Lists are created for each search segment

- Area (Tokyo, Kyoto, Osaka …)
- Number of people to stay (1 per., 2 per., …)

Lists are created every day based on an algorithm designed to maximize sales
Importance of listing items in e-commerce

- High percentage of people reserve hotels via the hotel list screen
 => Changing this list has a huge impact
- The higher the item is ranked in the list, the greater the click rate
- Performance difference of about 5% observed between a well-ordered list and randomly ordered list
Considerations in making the item list

In order to create an item list that maximizes sales …

1. Rank items with high sales potential in higher positions on the list
 => Make it easy to find popular items

2. Emphasize a certain amount of diversity in the items in high ranked positions
 => Make customers aware that they have a wide range of options
What is ‘diversity’ in the item list

• An example of diversity in the item list

Hotel classification diversity

1. Budget hotel
2. Budget hotel
3. Budget hotel
4. Resort hotel
5. Resort hotel
6. City hotel

= Better to have items from various classifications in higher positions

Hotel location diversity

1. Area A hotel
2. Area A hotel
3. Area A hotel
4. Area B hotel
5. Area B hotel
6. Area C hotel

= Better to have items from various locations in higher positions

• Related work on diversity in recommendations:
 – “Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems” [Vargas et al. ‘11]
 – “Post Processing Recommender Systems for Diversity” [Antikacioglu et al. ’17]
Result of solving the problem considering diversity with D-Wave

Solving the problem considering diversity with D-Wave, we got an item list reflecting **both scores and diversity**

=> +1% sales uplift

Item list considering only score
1. C, North, City hotel
2. B, North, City hotel
3. A, North, City hotel
4. D, North, City hotel
5. E, North, Budget hotel
6. H, South, Budget hotel
7. F, South, Budget hotel
8. G, South, Budget hotel

Item list considering diversity
1. B, North, City hotel
2. G, South, Budget hotel
3. A, North, City hotel
4. E, North, City hotel
5. H, South, Budget hotel
6. C, North, City hotel
7. F, South, Budget hotel
8. D, North, City hotel
Outline

- Problem Setup: How to list items on an e-commerce website
- Problem Formulation
- Numerical Experiments
- Summary
Determining the item list considering items’ sales scores

- We formulated the problem of determining the item list considering item sales scores as an Assignment Problem (AP)
- This problem can be solved easily with a general-purpose optimization solver

How to allocate items to each position?

1. Estimate sales when items allocated to each position
2. Decide items’ allocation to maximize sales by solving AP

Formulation of AP

\[
\text{max. } \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
\text{s.t. } \sum_{i \in I} x_{ij} = 1, \forall j \in J, [\text{One position allocated to only one item}] \\
\sum_{j \in J} x_{ij} = 1, \forall i \in I, [\text{One item allocated to only one position}] \\
x_{ij} \in \{0, 1\}. [\text{Whether item } i \text{ allocated position } j]
\]
Determining item list considering items’ diversity

- We formulated the problem of determining the product list considering item sales’ scores and diversity as a Quadratic Assignment Problem (QAP) → NP-hard problem

How to allocate items to each position?

1. Estimate sales when items allocated to each position and item similarity (customer pageview score)

2. Decide allocation of items to maximize score by solving QAP

Formulation of QAP

\[
\begin{align*}
\text{max.} & \quad \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} - w \sum_{i \in I} \sum_{i' \in I} \sum_{j \in J} \sum_{j' \in J} f_{ii'} d_{jj'} x_{ij} x_{i'j'} \\
\text{s.t.} & \quad \sum_{i \in I} x_{ij} = 1, \quad \forall j \in J, \\
& \quad \sum_{j \in J} x_{ij} = 1, \quad \forall i \in I, \\
& \quad x_{ij} \in \{0, 1\}.
\end{align*}
\]

- \(f_{ii'} \): Similarity between item \(i \) and \(i' \) (Number of pageviews in the same session)
- \(d_{jj'} \): Closeness between position \(j \) and \(j' \) (When they are next to each other 1, else 0)
- \(w \): Control parameter of diversity term
Convert QAP problem into QUBO problem

• We transformed the QAP problem into Quadratic Unconstrained Binary Optimization (QUBO) problems

Formulation of QAP

\[
\begin{align*}
\text{max.} & \quad \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
& \quad - w \sum_{i \in I} \sum_{i' \in I} \sum_{j \in J} \sum_{j' \in J} f_{ii'} d_{jj'} x_{ij} x_{i'j'} \\
\text{s.t.} & \quad \sum_{i \in I} x_{ij} = 1, \ \forall j \in J, \\
& \quad \sum_{j \in J} x_{ij} = 1, \ \forall i \in I, \\
& \quad x_{ij} \in \{0, 1\}.
\end{align*}
\]

Formulation of QUBO

\[
\begin{align*}
\text{min.} & \quad - \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
& \quad + w \sum_{i \in I} \sum_{i' \in I} \sum_{j \in J} \sum_{j' \in J} f_{ii'} d_{jj'} x_{ij} x_{i'j'} \\
& \quad + \sum_{j \in J} M \left(\sum_{i \in I} x_{ij} - 1 \right)^2 \quad \text{[Penalty of constraint violation]} \\
& \quad + \sum_{i \in I} M \left(\sum_{j \in J} x_{ij} - 1 \right)^2 \quad \text{[Penalty of constraint violation]} \\
\text{s.t.} & \quad x_{ij} \in \{0, 1\}.
\end{align*}
\]

\(M:\) Control parameter of constraint violation degree
Problem Setup: How to list items on an e-commerce website

Problem Formulation

Numerical Experiments

Summary
Experimental setting

- **Datasets**
 - Top 10 sales areas’ pageviews and reservation logs on hotel reservation site “Jalan”

- **Contents**
 1. Change of solution when diversity control parameter is moved
 2. Computing time to find the optimal solution
 3. Distribution of objective values obtained by D-Wave
 4. Comparison of objective values for large problems

- **Computing environment and parameter setting**
 - D-Wave : solver = DW_2000Q_VFYC_2, num_reads=10000, postprocess=optimization, num_spin_reversal_transforms = 4, annealing_time = 20
 - CPLEX : Version 12.6.3, mip.tolerances.mipgap=0, threads=1, CPU 3.1 GHz Intel Core i7, RAM 16GB
Comparison of solutions when changing diversity control parameter

Score change rate by controlling w

- When the parameter w increased
 - Estimated sales score decreased
 - Item diversity score increased

$$\max \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} - w \sum_{i \in I} \sum_{i' \in I} \sum_{j \in J} \sum_{j' \in J} f_{ii'} d_{jj'} x_{ij} x_{i'j'}$$

[Estimated sales score] [Item diversity score]

- After this slide, the parameter w will be set to 0.07 for considering diversity
Computing time to find the optimal solution

Comparison of TTS (Time-To-Solution)

- In terms of TTS (Time-To-Solution), D-Wave finds the optimal solution faster than CPLEX in our problems.

- The definition of TTS \[\text{[Rønnow, T. F. et al. '14]}\]

\[
\text{TTS}(t_f) = t_f R(t_f), \quad R(t_f) = \frac{\ln(1 - p_d)}{\ln[1 - p_S(t_f)]}
\]

- \(t_f\) : Runtime
- \(R(t_f)\) : Required number of runs to find optimal solution
- \(p_S(t_f)\) : Success probability of a single-instance run of the algorithm with a runtime
- \(p_d\) : Some desired probability (set to 0.99)

* D-Wave solved QUBO problems, and CPLEX solved QAP problems that have constraints.
As the number of items increases, the rate of obtaining optimal solutions decreases.

When the number of items is 8, about 50% of solutions have a gap from optimal value within 5%.

The definition of Gap:

\[\text{GAP} = \frac{\text{Optimal value} - \text{Obtained value}}{\text{Optimal value}} \]
Comparison of objective values for large problems in same computing time

Gap from minimum obtained value

- We proposed a decomposition method in qbsolv for our problem
- Our proposed model could find better solutions than other models
- The gap between our qbsolv object value and the other object value increases as the size of the problem became large

The definition of Gap:

$$GAP = \frac{Minimum\ obtained\ value - Obtained\ value}{Minimum\ obtained\ value}$$

* Time limit of CPLEX is set to the time required by qbsolv
Interpretation of solution obtained by solving QAP

By solving the problem, we got item list which reflects both scores and diversity

Item list considering only score (w=0, item diversity score = 1)
1. C, North, City hotel
2. B, North, City hotel
3. A, North, City hotel
4. D, North, City hotel
5. E, North, Budget hotel
6. H, South, Budget hotel
7. F, South, Budget hotel
8. G, South, Budget hotel

Item list considering diversity (w=0.07, item diversity score = 1.27)
1. B, North, City hotel
2. G, South, Budget hotel
3. A, North, City hotel
4. E, North, Budget hotel
5. H, South, Budget hotel
6. C, North, City hotel
7. F, South, Budget hotel
8. D, North, City hotel
The result of practical AB testing on our site

Sales uplift considering both sales and diversity

Result of AB testing from Aug1 to Sep10

- In AB testing, we observed better performance considering both sales and diversity than considering sales alone
 - Total sales uplift -> + 0.987%
- Considering diversity is especially important in smartphone sites
- Future work
 - Adjustment of the diversity parameter in real AB testing
Outline

• Problem Setup: How to list items on an e-commerce website
• Problem Formulation
• Numerical Experiments
• Summary
Summary

• We formulated the problem of determining the item list considering item **scores** and **diversity** as a Quadratic Assignment Problem (QAP), which is an NP-hard problem.

• We transformed the problem into Quadratic Unconstrained Binary Optimization (QUBO) problems.

• We confirmed that the order of the list determined reflects both scores and diversity.
Collaborator

This work was done in collaboration with:

• Masayuki Ohzeki (Tohoku University)
• Masamichi J. Miyama (Tohoku University)
• Kotaro Tanahashi (Recruit Communications Co., Ltd.)
• Koji Sakanuma (Recruit Communications Co., Ltd.)
Appendix: A Smart Decomposition Method for Assignment Problem

Kotaro Tanahashi, Naoki Nishimura
Recruit Communications Co., Ltd.
Comparison of Objective Values for Large Problems with the Same Computing Time

We only modified the decomposition method in qbsolv

• We proposed a decomposition method in qbsolv for our problem
• Our proposed model could find better solutions than other models
• The gap between our qbsolv object value and the other object value increases as the size of the problem became large

The definition of Gap:

\[\text{GAP} = \frac{\text{Minimum obtained value} - \text{Obtained value}}{\text{Minimum obtained value}} \]

* Time limit of CPLEX is set to the time required by qbsolv
Binary Representation of Assignment Problem (AP)

AP has complex constraint structure

<table>
<thead>
<tr>
<th>Items</th>
<th>Order rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Matrix Representation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Sum of each row is 1
- Sum of each column is 1
Smart Selection of Subproblem

Selection of subproblem without considering the structure

→ No feasible candidate 😞

Selection of subproblem based on the logical structure

→ 3!-1 feasible candidates 😊

Ex) Size of subproblem = 3²=9

Original qbsolv

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Our decomposition

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimize

Freeze

Logical meaning
Comparison of Objective Values for Large Problems with the Same Computing Time

Gap from minimum obtained value

We modified the decomposition method in qbsolv

- We proposed a decomposition method in qbsolv for our problem
- Our proposed model could find better solutions than other models
- The gap between our qbsolv object value and the other object value increases as the size of the problem became large

The definition of Gap:

\[
\text{GAP} = \frac{\text{Minimum obtained value} - \text{Obtained value}}{\text{Minimum obtained value}}
\]

* Time limit of CPLEX is set to the time required by qbsolv
Sep. 25, 2018

Introduction of DSL: PyQUBO for Programming QUBOs in Quantum Annealing

Kotaro Tanahashi*, Shu Tanaka†
* Recruit Communications Co., Ltd.
† Waseda University, JST PRESTO
How to Embed Problems in Annealing Machines

We need to write a program to construct QUBO for every specific problem.

QUBO formulation \(\leftrightarrow \) determine \(Q_{ij} \)

Original problem

\[
\sum_{i \geq j} x^*_i Q_{ij} x^*_j
\]

\(x \in \{0, 1\}^n, Q \in \mathbb{R}^{n \times n} \)

QUBO

Embed in sparse hardware

Hardware

Minor Embedding [J. Cai+ 2014]

Chain

\(p \): Chain penalty strength

dense graph

sparse graph
QUBO Construction in Recommendation

- Maximize sum of scores $\sum A_{ij}$
- Show a hotels in each page
- Each hotel is shown b times

Maximize $H - C$

$$H = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} x_{ij}/2$$

$$C = M \sum_{i=1}^{n} \left(\sum_{j=1}^{m} x_{i,j} - a \right)^2 + M \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_{i,j} - b \right)^2$$

$x_i \in \{0,1\}$

$\Rightarrow \sum (\sum_{j \in C_1} x_{ij} \sum_{k \in C_2} x_{ij})$

+ Introduce interaction between edges (QAP)

$w \sum_{i=1}^{n} \sum_{i=1}^{m} \sum_{j \in J} \sum_{j' \in J} f_{i,i'}d_{j,j'}x_{ij}x_{ij'}$

+ Increase categorical diversity

\Rightarrow Specific for the problem

Readability is low

Python code to build QUBO

```python
def toIndex(i, j):
    return i * m + j

Q = collections.defaultdict(int)
max_Aij = 0
for i in range(n):
    for j in range(m):
        Q[toIndex(i, j)] = -A[i][j] / 2
        max_Aij += A[i][j] if max_Aij < A[i][j] else max_Aij

M = max_Aij * coeff

# quadratic parts in the second term
for i in range(n):
    for j in range(i):
        Q[toIndex(i, j), toIndex(j, i)] = M

# quadratic parts in the third term
for j in range(m):
    for k in range(j):
        Q[toIndex(j, k), toIndex(k, j)] = M

# linear parts
for i in range(n):
    for j in range(m):
        Q[toIndex(i, j)] = M * x[i]

# constants
c = M * (x[0] * x[0] - 2 * x[0])
```
Developed DSL for Building QUBOs: PyQUBO

Example: Number partitioning problem with $S = \{4, 2, 7, 1\}$

$$H = (4s_1 + 2s_2 + 7s_3 + 1s_4)^2$$

$s_i \in \{-1, 1\}$

Create QUBO with Domain Specific Language (DSL).

```python
>>> from pyqubo import Spin
>>> s1, s2, s3, s4 = Spin("s1"), Spin("s2"), Spin("s3"), Spin("s4")
>>> H = (4*s1 + 2*s2 + 7*s3 + s4)**2
>>> model = H.compile()
>>> qubo, offset = model.to_qubo()
>>> pprint(qubo)
{( 's1', 's1' ): -160.0,
  ( 's1', 's2' ): 64.0,
  ( 's1', 's3' ): 224.0,
  ( 's1', 's4' ): 32.0,
  ( 's2', 's2' ): -96.0,
  ( 's2', 's3' ): 112.0,
  ( 's2', 's4' ): 16.0,
  ( 's3', 's3' ): -196.0,
  ( 's3', 's4' ): 56.0,
  ( 's4', 's4' ): -52.0}
```

1. Define the hamiltonian
2. Compile the hamiltonian
3. Call `to_qubo()`
Internal Structure of Expression

Example: number partitioning problem with $S = \{4, 2, 7, 1\}$

\[H = (4s_1 + 2s_2 + 7s_3 + 1s_4)^2 \]

\[\text{>>> } s_1, s_2, s_3, s_4 = \text{Spin}("s1"), \text{Spin}("s2"), \text{Spin}("s3"), \text{Spin}("s4") \]

\[\text{>>> } H = (4s_1 + 2s_2 + 7s_3 + s_4)^2 \]

Internal structure of H

The expression is internally represented as a tree structure.
Features of PyQUBO

With PyQUBO, you can do …

• Simplify your code with the power of abstraction
• Automatic validation of constraints
• Just In Time (JIT) compile
• Work with dimod\(^1\) seamlessly

[1] https://github.com/dwavesystems/dimod
The Power of Abstraction: Example of Adder

A, B: binary-encoded integer

\[A = \sum_n 2^n A_n \]
\[B = \sum_n 2^n B_n \]
\[S = A + B = \sum_n 2^n S_n \]

Example

\[A = [1,0,1,1] \]
\[+ B = [0,0,1,0] \]
\[S = [1,1,0,1] \]

How to get QUBO of \(S_n \)?

The circuit seems very complex 😞
Class of Half Adder and Full Adder

We can define the class of the circuit with DSL.

class HalfAdder:
 def __init__(self, a, b):
 self.s = Xor(a, b)
 self.c = And(a, b)

Define the class of half adder

class FullAdder:
 def __init__(self, a, b, c_in):
 half_adder_1 = HalfAdder(a, b)
 half_adder_2 = HalfAdder(half_adder_1.s, c_in)
 self.s = half_adder_2.s
 self.c_out = Or(half_adder_1.c, half_adder_2.c)

Define the class of full adder
Multi-bit Addition

```python
class BinaryIntegerVar(UserDefinedExpress):
    ...

def add(self, other):
    sum_bits = []
    half_adder = HalfAdder(self.bits[0], other.bits[0])
    sum_bits.append(half_adder.s)
    carry = half_adder.c
    for i in range(1, self.n_bits):
        full_adder = FullAdder(self.bits[i], other.bits[i], carry)
        sum_bits.append(full_adder.s)
        carry = full_adder.c_out
    return BinaryIntegerVar(sum_bits)
```

Finally, multi-bit addition is simplified as...

A = BinaryIntegerVar.new('A', n_bits = 4)
B = BinaryIntegerVar.new('B', n_bits = 4)
S = A.add(B)
S.bits[n].compile().to_qubo() # <= This is what we want

This is just an example.
Create your own class with DSL
And simplify your code.
You can tell the compiler a constraint part of your hamiltonian

Constraint *(Hamiltonian of constraint)*

Example: \(H = 2a + b + (a + b - 1)^2 \), Constraint \(a+b=1 \)

```python
>>> a, b = Qbit('a'), Qbit('b')
>>> exp = 2a + b + Constraint((a+b-1)**2, label="one_hot")
>>> model = exp.compile()
```

This part is recognized as a constraint: \(a+b=1 \)

when the constraint is broken
```python
>>> sol, broken, energy = model.decode_solution({'a': 1, 'b': 1}, var_type='binary')
>>> print(broken)
{'one_hot': {'penalty': 1.0, 'result': {'a': 1, 'b': 1}}}
```

When constraint is broken, broken constraint is shown

when no constraint is broken
```python
>>> sol, broken, energy = model.decode_solution({'a': 1, 'b': 0}, var_type='binary')
>>> print(broken)
{}
```

When nothing is broken, `broken` is empty
For example, when you solve Traveling Salesman Problem (TSP), you need to tune the penalty strength A.

Hamiltonian of TSP

$$H = \sum_{u}^{n} \sum_{v}^{n} d_{uv} \sum_{j}^{n} x_{j,u} x_{j+1,v} + A \sum_{v}^{n} \left(\sum_{j}^{n} x_{j,v} - 1 \right)^2 + A \sum_{j}^{n} \left(\sum_{v}^{n} x_{j,v} - 1 \right)^2$$

- We need to update A gradually up to the point where constraints are satisfied.
- If we compile it every time, it takes longer time 😞
- Can we update A without compiling from the beginning?
Just In Time (JIT) Compile with Param

• Yes, we can. Just define A by Param.

Define TSP in DSL
$x = \text{Matrix('x', n_city, n_city)}$
$\text{distance} = \text{Sum}(0, n_city, \lambda u: \text{Sum}(0, n_city, \lambda v: \text{Sum}(0, n_city, \lambda j: d(u, v) \times x[j, u] \times x[(j+1)\%n_city, v])))$
$\text{const}_1 = \text{Sum}(0, n_city, \lambda v: (\text{Sum}(0, n_city, \lambda j: x[j, v]) - 1)**2)$
$\text{const}_2 = \text{Sum}(0, n_city, \lambda j: (\text{Sum}(0, n_city, \lambda v: x[j, v]) - 1)**2)$

Construct hamiltonian and compile it
$A = \text{Param('A')}$
$H = \text{distance} + A \times (\text{const}_1 + \text{const}_2)$
$model = H\text{.compile()}$

Generate QUBO with different A
for a in [0.1, 0.2, ..., 1.0]
$qubo, offset = model\text{.to_qubo}(params={'A': a})$

You can get QUBO instantly even though you update A
Comparison of Compile Time with SymPy

- You can do the similar operations with SymPy which is a library for symbolic mathematics
- However, PyQUBO is much faster (×1000) than SymPy.

![Compile time of QAP](image1)
![Compile time of QAP (log scale)](image2)
Working with `dimod` Seamlessly

- `dimod`\[^1\]: a shared API for binary quadratic samplers developed by D-Wave Systems.
- `pyqubo.Model` can export `dimod.BinaryQuadraticModel`.
- `pyqubo.Model` can decode the solution from `dimod.Sampler`

\[^1\] https://github.com/dwavesystems/dimod
PyQUBO Just Has Been Released 😊

Please install PyQUBO!!

```
pip install pyqubo
```

https://pypi.org/project/pyqubo/

https://github.com/recruit-communications/pyqubo
Summary

• We developed DSL: PyQUBO for building QUBOs.

• PyQUBO’s features are
 • To simplify your code with the power of abstraction
 • Automatic validation of constraints
 • Just In Time (JIT) compile
 • Working with dimod seamlessly

• Enjoy your QUBO life!
Thank you for listening