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The DW2000Q
quantum processing unit (QPU)
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Trans.Appl.Supercond. 24, 1700110 (2014).
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We had our fun ...
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Using the DW2000Q as programmable quantum matter

“Phase transitions in a programmable
quantum spin glass simulator”

Science 361 6398 162-165 (2018)

“Observation of topological phenomena
in a programmable lattice of 1,800 qubits”

Nature 560 7719 (2018)
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... but where is the `quantum advantage'?
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... but where is the `quantum advantage'?
(and what does coherence or noise have to do with it?)
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Looking for a problem
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Looking for a problem
To see the impact of noise on QA, one needs a problem with the following attributes:

I Favorable phase transitions.
[See Katzgraber, Hamze, and Andrist, PRX 4, 021008 (2014)]

I Hard enough to resolve optimal anneal time.
[See Albash and Lidar, PRX 8, 031016 (2018)]

I Ground state probability is sensitive to noise within experimental constraints.
[?]
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8× 8× 8 cubic lattice spin glasses
An embedded problem that has the desired attributes. [See Science 361, 162 (2018)]

I Favorable phase transitions as a function of quantum annealing parameter s. 3
I Hard enough to make a DW2000Q QPU sweat. 3
I . . . but are these problems sensitive to noise?
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Cage match



The contenders

FAB1 QPU FAB2 QPU

One design, one problem set, two QPUs from different 
fabrication stacks ...
One design, one problem set, two QPUs from different 
fabrication stacks ... only one will prevail. 9 / 15
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Two identical QPUs but with di�erent noise characteristics

+-

I Two QPUs manufactured with di�erent processes:
I FAB1 - variant of process used to manufacture DW2000Q products
I FAB2 - a more recent experimental fabrication stack

I Roughly a factor of 5× less noise in FAB2 relative to FAB1.
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The rules
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Solving cubic lattice spin glasses
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Solving cubic lattice spin glasses
1. Send a spin glass instance
    to the QPU, take lots (105) 
    of reads for a range of     
    anneal time     .
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Solving cubic lattice spin glasses
1. Send a spin glass instance
    to the QPU, take lots (105) 
    of reads for a range of     
    anneal time     .

 

2. Record the probability of 
    observing a ground state
           .

3. Convert to solution time     .
    Determine optimal     and   
    minimum     .
 

 

4. Repeat steps 1-3 for 100 randomly generated spin glass instances on both FAB1 and FAB2 QPUs.  
    Note that identical instances are run on each QPU.  Which QPU wins?

11 / 15



Warm-up: Getting the embedding right
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Correcting the embedding improves performance
Consider 3 example instances run on FAB1 QPU. Measure ts versus ta for a naive
embedding and then a corrected (corr.) embedding per Science 361 6398 162-165 (2018):
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Correcting the embedding improves performance
Consider 3 example instances run on FAB1 QPU. Measure ts versus ta for a naive
embedding and then a corrected (corr.) embedding per Science 361 6398 162-165 (2018):

I Correcting→ > 500× reduction in optimal solution time ts on hard instance.
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The main event
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Reducing noise improves performance
Consider the same 3 example instances run on both FAB1 and FAB2 QPUs
with corrections per Science 361 6398 162-165 (2018):
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Reducing noise improves performance
Consider the same 3 example instances run on both FAB1 and FAB2 QPUs
with corrections per Science 361 6398 162-165 (2018):

I Modest 5× reduction in noise→ up to 40× reduction in optimal solution time ts.
13 / 15
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All 100 instances

I Mean 25× reduction in optimal solution time ts.
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Conclusions

I Use the lessons learned from studying phase transitions in embedded problems to
condition the embedding (∼ 100× improvement on typical instances, > 500× on
the hardest instances).

I Modest reductions in noise give signi�cant reductions in solution time
(∼ 5× reduction in noise, ∼ 25× improvement on typical instances).

I Further reductions in noise will continue to improve performance. We are nowhere
near a fundamental limit.
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