

A noisy brawl: D-Wave versus D-Wave

Richard Harris

March 6, 2019

The DW2000Q quantum processing unit (QPU)

Trans.Appl.Supercond. 24, 1700110 (2014).

Copyright © D-Wave Systems Inc.

We had our fun ...

Using the DW2000Q as programmable quantum matter

"Phase transitions in a programmable quantum spin glass simulator" *Science* **361** 6398 162-165 (2018)

"Observation of topological phenomena in a programmable lattice of 1,800 qubits" *Nature* **560** 7719 (2018)

Copyright © D-Wave Systems Inc.

... but where is the `quantum advantage'?

... but where is the `quantum advantage'? (and what does coherence or noise have to do with it?)

To see the impact of noise on QA, one needs a problem with the following attributes:

D:Wave

To see the impact of noise on QA, one needs a problem with the following attributes:

Favorable phase transitions.

[See Katzgraber, Hamze, and Andrist, PRX 4, 021008 (2014)]

DINANG

To see the impact of noise on QA, one needs a problem with the following attributes:

- Favorable phase transitions.
 [See Katzgraber, Hamze, and Andrist, PRX 4, 021008 (2014)]
- Hard enough to resolve optimal anneal time. [See Albash and Lidar, PRX 8, 031016 (2018)]

D:Wave

To see the impact of noise on QA, one needs a problem with the following attributes:

- Favorable phase transitions.
 [See Katzgraber, Hamze, and Andrist, PRX 4, 021008 (2014)]
- Hard enough to resolve optimal anneal time. [See Albash and Lidar, PRX 8, 031016 (2018)]
- Ground state probability is sensitive to noise within experimental constraints.
 [?]

חייים/יפ

$8 \times 8 \times 8$ cubic lattice spin glasses

An embedded problem that has the desired attributes. [See Science 361, 162 (2018)]

$8 \times 8 \times 8$ cubic lattice spin glasses

An embedded problem that has the desired attributes. [See Science 361, 162 (2018)]

 \blacktriangleright Favorable *phase transitions* as a function of quantum annealing parameter s. \checkmark

$8 \times 8 \times 8$ cubic lattice spin glasses

An embedded problem that has the desired attributes. [See Science 361, 162 (2018)]

- \blacktriangleright Favorable *phase transitions* as a function of quantum annealing parameter s. \checkmark
- Hard enough to make a DW2000Q QPU sweat.

$8 \times 8 \times 8$ cubic lattice spin glasses

An embedded problem that has the desired attributes. [See Science 361, 162 (2018)]

- Favorable phase transitions as a function of quantum annealing parameter s. \checkmark
- Hard enough to make a DW2000Q QPU sweat.
- ... but are these problems sensitive to noise?

Copyright © D-Wave Systems Inc.

Cage match

Contraction of the local division of the loc

The contenders

FAB1 QPU

One design, one problem set, two QPUs from different fabrication stacks ... only one will prevail.

FAB2 QPU

Two identical QPUs but with different noise characteristics

- ► Two QPUs manufactured with different processes:
 - FAB1 variant of process used to manufacture DW2000Q products
 - ► FAB2 a more recent experimental fabrication stack
- \blacktriangleright Roughly a factor of 5× less noise in FAB2 relative to FAB1.

The rules

Solving cubic lattice spin glasses

Solving cubic lattice spin glasses

1. Send a spin glass instance to the QPU, take lots (10^5) of reads for a range of anneal time t_a .

D::MOVG

Solving cubic lattice spin glasses

1. Send a spin glass instance to the QPU, take lots (10^5) of reads for a range of anneal time t_a .

2. Record the probability of observing a ground state Pgs · 10^{-1} $P_{\rm gs} = A e^{\tau/t_a} t_a^\beta$ 10^{-2} 10^{-3^ا ط} 10 10^{-t} 10^5 reads 10⁻⁶ 10^{0} $10^1 \ 10^2 \ 10^3 \ 10^4$ (μs)

Solving cubic lattice spin glasses

1. Send a spin glass instance to the QPU, take lots (10^5) of reads for a range of anneal time t_a .

- 2. Record the probability of observing a ground state gs 10 $P_{\rm gs} = A e^{\tau/t_a} t_a^{\beta}$ 10^{-2} 10⁻³¹ ط 10 10^{-t} 10^5 reads 10⁻⁶ 10° $10^{1} 10^{2} 10^{3} 10^{4}$
- 3. Convert to solution time t_s . Determine optimal t_a and minimum t_s

3. Convert to solution time t_s .

Solving cubic lattice spin glasses

1. Send a spin glass instance to the QPU, take lots (10^5) of reads for a range of anneal time t_a .

4. Repeat steps 1-3 for 100 randomly generated spin glass instances on both FAB1 and FAB2 QPUs. Note that identical instances are run on each QPU. *Which QPU wins?*

2. Record the probability of

Warm-up: Getting the embedding right

Correcting the embedding improves performance

Consider 3 example instances run on FAB1 QPU. Measure t_s versus t_a for a naive embedding and then a corrected (corr.) embedding per *Science* **361** 6398 162-165 (2018):

D:WOVG

Correcting the embedding improves performance

Consider 3 example instances run on FAB1 QPU. Measure t_s versus t_a for a naive embedding and then a corrected (corr.) embedding per *Science* **361** 6398 162-165 (2018):

D:WOVG

Correcting the embedding improves performance

Consider 3 example instances run on FAB1 QPU. Measure t_s versus t_a for a naive embedding and then a corrected (corr.) embedding per *Science* **361** 6398 162-165 (2018):

• Correcting $\rightarrow > 500 \times$ reduction in optimal solution time t_s on hard instance.

Copyright © D-Wave Systems Inc.

D:WOVG

The main event

Reducing noise improves performance

Consider the same 3 example instances run on both FAB1 and FAB2 QPUs with corrections per *Science* **361** 6398 162-165 (2018):

Reducing noise improves performance

Consider the same 3 example instances run on both FAB1 and FAB2 QPUs with corrections per *Science* **361** 6398 162-165 (2018):

D::Mave

Reducing noise improves performance

Consider the same 3 example instances run on both FAB1 and FAB2 QPUs with corrections per *Science* **361** 6398 162-165 (2018):

 $\blacktriangleright \text{ Modest } 5\times \text{ reduction in noise} \to \text{ up to } 40\times \text{ reduction in optimal solution time } t_s.$

All 100 instances

• Mean 25× reduction in optimal solution time t_s .

Conclusions

► Use the lessons learned from studying phase transitions in embedded problems to condition the embedding (~ 100× improvement on typical instances, > 500× on the hardest instances).

- ► Use the lessons learned from studying phase transitions in embedded problems to condition the embedding (~ 100× improvement on typical instances, > 500× on the hardest instances).
- ► Modest reductions in noise give significant reductions in solution time (~ 5× reduction in noise, ~ 25× improvement on typical instances).

- ► Use the lessons learned from studying phase transitions in embedded problems to condition the embedding (~ 100× improvement on typical instances, > 500× on the hardest instances).
- ► Modest reductions in noise give significant reductions in solution time (~ 5× reduction in noise, ~ 25× improvement on typical instances).
- Further reductions in noise will continue to improve performance. We are nowhere near a fundamental limit.