Tutorials

Quantum computing is not a familiar topic to most people, nor is programming a quantum computer. Our tutorials provide background information for those interested in understanding quantum computers and how to program them.

How D-Wave processors are built, and how they use the physics of spin systems to implement quantum computation The aim of this document is to describe how a quantum computer is physically built, how quantum bits and their associated circuitry are created, addressed, and controlled, and what is happening inside the computer when programmers send information to a D-Wave quantum machine.

Publications

D-Wave has published more than 70 peer-reviewed papers in scientific journals including Nature, Science, Physical Review and others. There are also many other papers written by independent scientists about the D-Wave technology. You can find links to them from the publications page.

Florian Neukart, David Von Dollen, Gabriele Compostella, Christian Seidel, Sheir Yarkoni, and Bob Parney (Volkswagen Group of America, San Francisco; Volkswagen Data Lab, Munich, Germany; D-Wave Systems Inc., Burnaby, Canada)

"Quantum annealing algorithms belong to the class of meta-heuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs) produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity of current-generation D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow problem."

(9 Aug 2017) Link to PDF.