D::\WJaAURE

The Quantum Computing Company™

D-Wave Hybrid Solver Service + Advantage: Technology Update

Catherine McGeoch, Pau Farré and William Bernoudy

2020-09-25

Overview

The D-Wave hybrid solver service (HSS), available from the LeapTM
quantum cloud service, was launched in February 2020. This docu-
ment presents an overview and performance evaluation of an upgraded
version of HSS launched in September 2020. The new version incor-
porates the Advantage™ quantum computer, and contains software
enhancements that expand the size and scope of problems that can
be solved efficiently. This report shows how a hybrid approach incorpo-
rating both quantum and classical components can outperform either
method used alone. A small performance study demonstrates that the
upgraded version outperforms its predecessor as well as state-of-the
art classical alternatives.

14-1048A-A
D-Wave Technical Report Series

CONTACT

Corporate Headquarters
3033 Beta Ave

Burnaby, BC V5G 4M9
Canada

Tel. 604-630-1428

US Office
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

HSS Advantage Update

Notice and Disclaimer

D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this doc-
ument, any documents referenced herein, and its proprietary technology, including copyright,
trademark rights, industrial design rights, and patent rights. D-Wave trademarks used herein
include D-WAVE®, Leap™ quantum cloud service, Ocean™, Advantage™ quantum system,
D-Wave 2000Q™, D-Wave 2X™, and the D-Wave logo (the “D-Wave Marks”). Other marks used in
this document are the property of their respective owners. D-Wave does not grant any license, assign-
ment, or other grant of interest in or to the copyright of this document or any referenced documents,
the D-Wave Marks, any other marks used in this document, or any other intellectual property rights
used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

Summary

The D-Wave Hybrid Solver Service (HSS) was launched in February 2020. This report de-
scribes an upgraded version of the HSS made available in September 2020, with a compar-
ison to its predecessor. Key points are summarized below.

e The HSS contains a portfolio of hybrid solvers that exploit both classical and quan-
tum computation methods to find solutions to inputs much larger than the quantum
chip alone can read. With its easy-to-use interface, HSS represents a significant step
forward in lowering barriers to usability of D-Wave quantum computers.

* We demonstrate a phenomenon known as quantum acceleration, whereby queries to
the quantum processing unit (QPU) are used to guide the classical solver to find
better-quality solutions faster than would otherwise be possible. This illustrates the
unique power and potential of the hybrid approach to problem-solving.

* The new version of HSS improves over the previous in two major ways: it incor-
porates the 5000-qubit Advantage (QPU) rather than its predecessor, the 2000-qubit
2000Q QPU; and it can read much larger inputs, with up to one million variables (if
not fully connected), or to 20,000 variables (if fully connected).

¢ A small performance study shows that both versions of HSS solvers can outperform
a collection of 37 publically-available solvers, on a variety of inputs that are relevant
to practice. The upgraded version also outperforms its predecessor in these tests:
when given the same amount of computation time, version 1 finds solutions of better
or equal quality on 67 percent of inputs, while version 2 finds solutions of better
or equal quality on 84 percent of inputs. Version 2 also compares well to the public
solvers on inputs that are too large to fit on version 1.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

Contents

1 Introduction

11 Operational overviewo Lo
1.2 Quantum acceleration of classical heuristics

2 Performance overview

3 Summary

References

A Details of the experiments
Al Measurement and metrics e e

A2 MQLib

Copyright © D-Wave Systems Inc.

1
1
12

HSS Advantage Update

1 Introduction

Numerous research papers and presentations at D-Wave user-group meetings have demon-
strated over 200 types of problems that can be formulated and run on D-Wave’s annealing-
based quantum computers [1]. A review of this body of work shows that application in-
puts, i.e. those of interest in real-world practice, are typically too large to fit onto current-
model quantum processing units (QPUs), which means that they cannot be solved directly
by the quantum system.

Many ideas have been proposed for overcoming this size limitation by developing hybrid
solvers that combine classical and quantum approaches to problem-solving, exploiting the
best features of each computing paradigm. For developers interested in exploring these
ideas, D-Wave has created dwave-hybrid, a Python framework with support for imple-
menting and testing hybrid workflows. This framework is part of the open source Ocean
developer’s tool suite: visit [2, 3] to learn more.

For those who prefer to skip the code-development step, D-Wave launched the Leap hy-
brid solver service (HSS) in February 2020, containing a collection of hybrid portfolio
solvers that target different categories of inputs and use cases. The HSS is available through
the Leap quantum cloud service; the portfolio and solver codes are proprietary. Visit [4] to
learn more about the Leap quantum cloud service and the HSS.

Benefits of adopting this portfolio approach to hybrid quantum-classical computation in-
clude:

* Hybrid solvers in the HSS can read and solve much larger inputs than current-model
QPUs. The solvers work by sending quantum queries to a D-Wave quantum proces-
sor, using the replies to guide their search of the larger solution space. This approach
leverages the unique problem-solving capabilities of the QPU, and extends those ca-
pabilities to larger and more varied types of inputs than would otherwise be possible.

* Solvers in the HSS are designed to take care of low-level operational details for the
user: solving problems with this service does not require any knowledge whatsoever
about how to choose parameter settings for D-Wave QPUs.

¢ Different types of classical solvers tend to work best on different types of inputs. A
portfolio solver can select and run multiple solvers in parallel using a cloud-based
platform, and return the best solution from the pool of results. This approach relieves
the user from having to guess beforehand which solver might work best on any given
input, and minimizes the computation time needed to obtain best-quality results.

As of September 2020, the HSS contains two portfolio solvers here referred to as versionl
and version2.! The former is essentially the original solver launched in February 2020
(with small upgrades), and the latter supports several new features:

® Solvers in versionl send quantum queries to a 2000-qubit 2000Q QPU, while solvers
in version2 employ a 5000-qubit Advantage QPU. See [5] to learn more about the
Advantage quantum system.

IFor search engine purposes, their official names are hybrid binary quadratic.model versionl and
hybrid_binary_quadratic_model_version2.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

108 4 Total Weights <2 -108

7
107 5 version2
106 4
"
2 10° 4
3 versionl
= 10 4
103 4

102 4 N=<106":

10% 4

T T T T T
10! 10?2 10° 104 10° 106
N nodes

Figure 1: Input graph sizes for HSS solvers, plotted as number of edges M versus number of nodes
N (note the double logarithmic scale). The teal region shows size limits for version1 and the orange
region shows the extended size limits supported by version2. The blue dashed line marks the size
limit for fully-connected graphs read by version2.

¢ Solvers in versionl can read fully-connected input graphs with up to 10 thousand
nodes. Solvers in version2 can read fully-connected input graphs with up to 20 thou-
sand nodes; for graphs that are not fully-connected, version2 can read inputs with
up to 1 million nodes and 2 million total weights (weights may be assigned to both
nodes and edges). This represents an increase of between 2-fold and 100-fold in the
number of problem variables (i.e. nodes) that these solvers can read. Figure 1 illus-
trates the difference in input sizes for the two portfolio versions, in terms of number
of nodes, edges, and total number of input weights.

® Some hybrid solvers in version2 have been upgraded for improved performance on
certain categories of inputs, as described in Section 2.

Starting October 2020, HSS will contain a third portfolio solver that can read discrete quadratic
models (DQMs) as inputs. That is, instead of binary solvers that read problems defined on
binary values like [0, 1] or the DQM solver reads problems with variables that are defined
on finite discrete sets of values. For example, the user can specify that variables are to be
assigned values corresponding to four DNA bases [A,C,G,T], or to 24 starting times [00:00,
00:30, ..., 24:00, 24:30] See the D-Wave white paper and documentaion [6] for more about
this new category of hybrid solvers in the HSS.

This report presents an overview of the two binary portfolio solvers currently in the HSS,
together with a small performance comparison, as follows.

* Section 1.1 gives an operational overview of HSS solvers, describing their input/output
interface and explaining how the quantum and classical components are organized
to work together.

® Section 1.2 demonstrates how a version2 solver can leverage queries to an Advan-
tage QPU, to find better solutions faster than an implementation without quantum
queries in its workflow. We describe this type of performance boost as quantum accel-
eration of the classical heuristic workflow.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

e Section 2 compares a versionl and a version2 solver to a published performance
report [7] about 37 classical solvers from the MQLib repository [7]. We find that both
HSS solvers outperform the best of the MQLib solvers, and that version2 outper-
forms versioni.

— The first test uses 45 MQLib inputs with up to N = 10, 000 variables (which we

call standard inputs), which can fit on both hybrid solvers. On the set of standard
inputs, the versionl solver found solutions of better or equal quality than all 37
MQLib solvers, on 30 of 45 inputs (67 percent), while the version2 solver found
better or equal solutions on 38 of 45 inputs (84 percent).

The standard inputs fall in three categories: dense, medium, and sparse. The
versionl solver performs well against MQLib solvers on dense and medium
inputs, but can only beat or match MQLib on 4 of 15 sparse inputs (33 percent).
The version2 portfolio has been upgraded for better performance on sparse
inputs, and finds better or equal solutions in 13 of 15 cases (87 percent).

Our second test (extra-large inputs) looks at performance of version2 on an ad-
ditional set of 20 MQLib inputs with between N > 10,000 and N = 53,130
variables (the largest available in MQLib). On these inputs the version2 solver
finds better solutions than the best of 37 MQLib solvers in half the cases.

These performance results should be considered preliminary because the HSS will see con-
tinued improvement and expansion of problem scope, with new solvers to be added in the
coming months and years.

1.1 Operational overview

The hybrid portfolio solvers currently in the HSS provide the following user interface; see
[8] for details.

¢ Inputs: The user provides two pieces of information:

— Input Q. The solver reads an input for the quadratic unconstrained binary op-

timization (QUBO) problem (defined on variables (0,1)), or for the Ising Model
optimization problem (defined on variables (-1, +1)). The input Q is formulated
in D-Wave’s standard binary quadratic model (BQM) format.

For version1 the maximum input size corresponds to a complete graph contain-
ing N = 10,000 nodes and M = 49,995, 000 edges. For version2 the graph may
contain up to one million nodes, assuming a maximum total of two hundred
million weights on nodes and edges. The largest complete graph that fits these
constraints has N = 20,000 nodes. Figure 1 illustrates these size boundaries.

Time limit T: The user can (optionally) provide a maximum time limit for all
solvers to run, in units of seconds. The portfolio solver calculates a minimum
time limit based on input size, which may be used by default, if desired. The
minimum time limit ensures that each hybrid solver has enough time to perform
initialization and to query and receive at least one response from the QPU. The
minimum and maximum time limits for any input size are 3 seconds and 24
hours, respectively.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

hybrid

QUBO . .
Q:’ portfolio hybrid OM fe—+
Solution | sOlver

user

hybrid

Figure 2: Structure of a portfolio solver. The portfolio front end (blue) reads an input Q and optionally
at time limit T. It it invokes some number of hybrid solvers running on classical CPUs and GPUs
(teal), to find solutions to Q. The hybrid solvers contain a quantum module (QM) that formulates
and sends quantum queries to a D-Wave quantum processor (orange), which supplies answers to
the queries. At time limit T, the hybrid solvers send their results to the portfolio front end, which
forwards the best solution found to the user.

¢ Outputs: The solver output consists of the following:

— A lowest-cost solution from among those found by all solvers in the portfolio,
while running within the specified time limit.

- Information about the time the portfolio solver spent working on the problem:
run_time is the total elapsed time including system overhead; charge_time is a
subset of run_time (omitting overhead) that is charged to the user’s account; and
gpu_access_time is the time spent accessing QPU. Note that the classical and quan-
tum solver components operate asynchronously in parallel, so the total elapsed
time does not necessarily equal the sum of component times.

Each hybrid solver within a porfolio solver contains both classical and quantum compo-
nents. Upon receiving an input Q, the portfolio front end chooses one or more solvers to
work on Q, and starts them running in parallel on a collection of CPU and/or GPU plat-
forms provided by Amazon Web Services (AWS).

Figure 2 shows how classical and quantum components are structured to work together.
The portfolio front end (blue) reads an input Q and optionally a time limit T, submitted
by the user. Depending on the size and structure of Q, it invokes some number of hybrid
solvers running on classical CPUs and GPUs (teal). The hybrid solvers contain a query
module (QM) that communicates with a specific D-Wave quantum processor (orange). Be-
fore time limit T is reached, the hybrid solvers send their results to the portfolio front end,
which forwards the best solution found to the user.

During the computation, the QM formulates and sends quantum queries, which are partial
representations of input Q that are small enough to be solved directly on an Advantage
QPU (used by version2) or a 2000Q QPU (used by version1).” The QM receives replies
from the QPU, and formulates those replies into suggestions for the hybrid solvers about
promising regions of the solution space to be searched.

In this framework the D-Wave quantum processor acts as a quantum query servet, receiv-
ing queries from active solvers and generating replies in the form of samples of solutions

2This assignment holds in normal use. In the extremely rare event that access to the preferred QPU fails during
the computation, the hybrid solver may switch to a backup query server of a different type.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

1.2

0.35 0.6 —— With Hybrid Workflow
- —_— Without Hybrid Workflow
0.304 0.5
§ 0.25 § 0.4
>.0.20 >
] 0.3
2 0.15+ 2
] wo.2
0.10+
0.1
0.057 —— with Hybrid Workflow
0.00- Without Hybrid Workflow 0.0
10! 10? 10° 10? 10° 10
Time (s) Time (s)
(a) n = 4096 (b) n = 20,000
0.200
0.81 —— With Hybrid Workflow
0.1754 == : Without Hybrid Workflow
0.1501
0.6
§ 0.125- §
>.0.100 >
2 0.4
% 0.075+ %
0.050- 0.2
0.0251 —— Wwith Hybrid Workflow
0.0004 Without Hybrid Workflow 0.0
10° 10 10° 10¢
Time (s) Time (s)
(c) n = 80,000 (d) » = 1,000,000

Figure 3: Performance of a version2 solver using a hybrid workflow with quantum queries enabled
(blue) and a heuristic workflow with quantum queries disabled (orange). The four panels show re-
sults for four inputs of sizes between n = 4096 and n = 10°, plotting solution quality versus com-
putation time (note the logarithmic x-scale). On each input, the version2 solver was run for five
independent trials, and progress (solution quality versus computation time) was sampled over a
range of times. Solution quality is measured as the scaled residual distance from the best solution
found in all trials. The shaded regions show the minimum and maximum solution energies found
over five trials, and the lines trace median solution energies, at each point in time.

to its inputs. The classical and quantum components in each solver communicate asyn-
chronously so that contention or latency issues in one part of the system do not block
progress in the other.

Quantum acceleration of classical heuristics

Internal versions of HSS solvers can operate in two modes, called workflows. The hybrid
workflow implements a classical optimization heuristic that incorporates a query module
(QM): the QM formulates quantum queries, sends them to the QPU, receives replies, and
incorporates them back into the classical workflow. Heuristic workflow refers to the same
hybrid solver with quantum queries disabled.?

Figure 3 compares performance of the heuristic (orange) and hybrid (blue) workflows,

3For reasons of solver efficiency and interface simplicity, parameters such as choice of workflow mode are not
supported in implementations of HSS solvers available to the public.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

using one of the solvers in the version2 portfolio. The figure shows results from tests on
four inputs (one per panel) that were designed to illustrate a phenomenon that we refer to
as quantum acceleration.

The four inputs contain between n = 4096 and n = 1,000, 000 variables. For each input, the
solver was run for five independent trials in each mode, for a range of stopping times. The
shaded regions show the minimum and maximum values of solution energies e observed
over five trials at each point in time, and the lines show median energies.

The y-axis corresponds to scaled energy distance & = (e — eyin)/€min, Where ey, is the
minimum energy discovered for this input, over all trials. The x-axis corresponds to times
at which improved energies were reported (note logarithmic x-scale). The lower limit of
the x-axis corresponds to the minimum time limit set by the portfolio solver for each input
size. The upper time bounds ranged from 20 minutes in panel (a) to just under 14 hours in
panel (c).

As is typical for opimization heuristics, we see that both workflows show progress, finding
better solutions with longer computation times. As a general rule, we expect that both
solvers will eventually converge to the same (optimal) solution energy, if given enough
time, as suggested by the overlap of shaded regions in panel (c); however it is always
possible for a solver to get “stuck” in a local minimum and fail to make progress (which
may have happened to the heuristic workflow in panels (b) and (d).

The four panels illustrate a variety of convergence paths that may be observed, from input
to input and trial to trial, but in every case the the hybrid workflow converges faster toward
better-quality solutions. We refer to this phenomenon as quantum acceleration: the Advan-
tage QPU is able to exploit limited information about the full problem, and to generate
useful suggestions about new promising regions of the search space to explore. Quantum
acceleration guides the classical heuristic to find better solutions faster than would other-
wise be possible, over the range of computation times.

Note that these inputs were constructed specifically to demonstrate this property, and that
quantum acceleration does not necessarily take place on every input submitted to HSS.
For example, some inputs may have a simple combinatorial structure, which means that
the classical solver does not require a quantum boost to be able to converge quickly to near-
optimal solutions. Other inputs may contain structures that are too complex to be captured
by the restricted information in a quantum query.

Even when quantum acceleration does occur, it may not necessarily be observed if the time
limit T is too small or too large. For example, in panel (a) comparison of solution energies
at times below 30 seconds would reveal no real difference between the two workflows.
Similarly, as mentioned earlier, we expect both workflows to eventually converge to the
same solution, which would again close the performance gap between the two.

2 Performance overview

This section presents a small performance study comparing versionl and version2 to a
large collection of CPU-based classical solvers available in an online repository.

Dunning et al. [7] evaluate performance of 37 Max Cut and QUBO solvers using a testbed
of 3296 inputs, which were culled from online optimization repositories worldwide, and

Copyright © D-Wave Systems Inc.

HSS Advantage Update

0.6

0.4 I I
. vl win
02 vl tie
v2 win

v2 tie

0.0 T = - T T T
sparse med dense small medium large hybrids xlarge

Proportion of Wins or Ties

Figure 4: Performance of HSS version1 (blue) and version2 (orange) solvers on MQLib inputs. In
each pair, the blue bars show the proportion of wins (darker) and ties (lighter) achieved by version1
in comparison to MQLib. The orange bars show proportion of wins (darker) and (lighter) achieved
by version2 in comparison to MQLib. The first six pairs of bars describe performance on 45 original
MQLib inputs, divided into groups according to graph density (sparse, medium, dense) and size
(small, medium large). The next bar marked hybrids shows a head-to-head comparison of versioni
(blue) and version 2 (orange), with ties marked in teal. The rightmost bar x-large compares perfor-
mance of version2 against MQLib solvers on 20 very large inputs that are too big for versioni.

translated to Max Cut and QUBO form for this repository. The solvers, inputs, and data
analysis tools from this extensive project are available from the MQLib repository (see [7]).

As mentioned in Section 1.2, solver-to-solver differences in solution quality tend to disap-
pear when heuristic solvers are allowed long runtimes, because many will eventually con-
verge to the same (optimal) solution energy. Similarly, performance differences are hard
to detect when solvers are allowed very short runtimes, because initial solutions tend to
be more-or-less random. Thus distinctions in solver performance with respect to solution
quality can only be observed when time limits used in the experiment are somewere be-
tween these two extremes.

For this reason, for each input Q the authors provide a recommended time limit Tg, short
enough that only a small number of solvers were able to match the best solution cost Cg
found. Running multiple tests for the recommended time limit makes it possible to observe
systematic differences in solver performance.

In their tests, all solvers ran for five independent trials using recommended time limits.
Thus we may consider Cg to be the best result that would be observed by a hypothetical
parallel portfolio running five independent copies of each solver, totaling 185 solvers. Here
we refer to Cg as the reference cost, or reference energy.

Our tests use two subsets of MQLib inputs that are selected from among the “hardest” in
MQLib. That is, all have a maximum recommended time limit of To = 20 minutes, and
in each case the reference cost was found by only one or two MQLIb solvers: that is, the
remaining solvers found strictly worse solutions. The inputs were selected at random in
batches to cover a range of sizes and densities: see Appendix A.2 for details.

To match the MQLib test design, for each input we ran five independent trials of a single
solver from versionl and a single solver from version2, for 20 minutes per trial. In terms
of computational resource usage, the 37 x 5 MQLib tests required 62 CPU-hours of total
work per input, or 20 minutes using 185-fold parallelization. Five trials of a single HSS

Copyright © D-Wave Systems Inc.

HSS Advantage Update

solver required 1.7 (CPU/GPU) hours of classical work per input (running in tandem with
the QPU), or 20 minutes using 5-fold parallelization.

Our first experiment compares performance of the versionl and version2 solvers against
the best of 37 MQLib solvers, using a set of 45 inputs from the MQLib repository (the
“standard set”) that are small enough to fit on both solvers. The second experiment looks
at performance of the version2 solver on an additional 20 inputs (the “x-large set”) that
are too large for versionl and among the largest available in MQLib. Details about input
properties and our selection procedure may be found in Appendix A.2.

For each input Q we record the best solution energy obtained from five independent trials
of each hybrid solver, and compare it to the MQLib reference cost Cg (the best found in all
trials of all 37 solvers). For each input there are three possible outcomes: the best solution
energy found by the hybrid solver in five trials is lower than (win), equal to (tie), or higher
than (lose) the reference cost.*

Figure 4 presents the tallys for the two HSS solvers.

The leftmost group of bars shows performance of versioni (blue) and version2 (orange)
solvers versus MQLib solvers, using our standard set of 45 inputs. These inputs fall into
three groups of 15 according to graph density (dense, medium, sparse); the same inputs fall
into three groups of 15 according to graph size (small, medium, large), totaling 9 groups of
5 inputs each.

The next bar, labeled “hybrids,” shows results of a head-to-head comparison of versionl
and version2 on the 45 standard inputs, with ties marked in teal. The rightmost bar la-
belled “x-large” shows a comparison of version2 to the MQLib solvers on the 20 extra-
large inputs (no ties).

Hybrid solvers versus MQLib on standard inputs. The first group of six pairs shows test
results for “standard” inputs organized by density (sparse, medium, dense) and by size
(small, medium, large). The blue bars show performance of the version1 solver using the
2000Q quantum processor, versus 37 MQLib solvers, and orange bars show performance
of the version2 solver using Advantage system (orange), again versus the MQLib 37. The
length of each bar shows the proportion of tests that resulted in wins (darker blue or or-
ange) or ties (lighter blue or orange) for the HSS solvers. The grey sections of each bar show
the proportion of wins for MQLib solvers.

In the first three cases (sparse, medium, dense) we see that the version2 solver signifi-
cantly outperforms the versionl solver on sparse inputs, improving from wins-or-ties on
40 percent of tests (6 of 15) up to 87 percent of tests (12 of 15). This improvement reflects
a combinaton of software enhancements and the move from the D-Wave 2000Q to Advan-
tage as a back-end query server. On medium and dense inputs, the two hybrid solvers
show about the same performance.

Considering the next three cases (small, medium, large) we observe that the version2
solver shows good improvement over versioni on all three size categories, with greater
performance gap seen on small and medium-sized inputs.

4A look at the data suggests that some wins and losses are by very small margins, and may in fact be mis-
recorded ties. That is, it is possible that the same solution gives rise to slightly different costs when they are
calculated in different computing environments, due to numerical precision issues for the enormous input sizes
being tested. However, there is no way to verify this hypothesis without access to the original solutions and
calculations used in MQLib.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

Over all 45 inputs in this test, the versioni solver has 27 wins and 3 ties versus the best
of 37 MQLib solvers, totalling 67 percent, while the version2 solver has 34 wins and 4 ties
versus MQLib solvers, totalling 84 percent.

versionl versus version2 on standard inputs. The next column labeled “hybrids” shows
results of a head-to-head comparison of the two hybrid solvers on the set of 45 standard
inputs. Here, version2 solver found better solutions in 35 cases (78 percent), and the two
solvers tied in 5 cases (11 percent). We attribute the superior performance of version2 to
a combination of coding and algorithmic improvements to the hybrid software — partic-
ularly targeting performance on sparse inputs — and to the upgrade from the 2000-qubit
2000Q QPU to the 5000-qubit Advantage QPU as the back-end quantum query server.

version2 vs MQLib solvers on extra-large inputs. The rightmost bar of Figure 4 shows
results for the 20 extra-large MQLib inputs, of sizes between N > 1000 and N = 53,130
(the largest available in MQLib). On these inputs, in five trials the version2 solver found
better solutions than the best of 37 MQLib solvers (each run for five trials, totaling 185
trials), on exactly half of the inputs.

Because none of the extra-large inputs in MQLib meet our selection criteria for medium
and dense inputs, all 20 inputs in the test set are categorized as sparse. Within that context,
we observe that version2 tends to perform relatively better on the less-sparse problems in
this test set. See Appendix 2.1 for details about the inputs used in these tests.

More extensive evaluation of our hybrid solvers, on a variety of inputs in the full range
of sizes that can be accomodated by version2, is of course an interesting question future
research. Progress on this front has been somewhat hampered by unavailability of suitable
classical competition that can also handle the larger input sizes; however we look forward
to removal of this temporary obstacle in the next several months.

3 Summary

This report describes general features and properties of the upgraded D-Wave hybrid
solver service avalailable as of September 2020, and presents a preliminary look at hybrid
solver performance. A comparison of an earler versionl solver to an upgraded version2
solver in the HSS portfolio shows that version2 significantly outperforms version1. Both
solvers outperform a collection of 37 classical solvers available in a public repository, when
tested on a wide variety of inputs that have structures that are relevent to applications
practice.

We look forward to future work to expand this preliminary study with more tests compar-
ing performance of solvers in the HSS portfolio against state-of-the-art classical solvers, on
a greater variety of inputs of relevance to applications practice.

Copyright © D-Wave Systems Inc.

HSS Advantage Update 10

References

D-Wave Applications, (web page and search tool), available at http://dwavesys.com/applications, accessed September 2020.
D-Wave Hybrid, http://github.com/dwavesystems/dwave-hybrid, accessed February 2020.

D-Wave Ocean, http://ocean.dwavesys . com, accessed February 2020.

D-Wave Leap, http://cloud.dwavesys.com/leap, accessed February 2020.

C. McGeoch and P. Farré, The D-Wave Advantage System: An Overview, https : //dwavesys . com/resources/publications (D-Wave
Technical Report 14-1049A-A, 2020).

C. McGeoch and P. Farré, Discrete Quadratic Model Solver: An Overview, https://dwavesys . com/resources/publications (D-Wave
Technical Report (to appear), 2020).

7 Dunning et al., “What works best when? A systematic evaluation of heuristics for Max-Cut and QUBO,” INFORMS Journal on Com-
puting 30, also visit http://github.com/MQLib (2018).

D-Wave Documentation: Hybrid Solvers, https://docs . ocean.dwavesys.com/en/stable/overview/hybrid.html, accessed August
2020.

Copyright © D-Wave Systems Inc.

http://dwavesys.com/applications
http://github.com/dwavesystems/dwave-hybrid
http://ocean.dwavesys.com
http://cloud.dwavesys.com/leap
https://dwavesys.com/resources/publications
https://dwavesys.com/resources/publications
http://github.com/MQLib
https://docs.ocean.dwavesys.com/en/stable/overview/hybrid.html

HSS Advantage Update

A

Al

Details of the experiments

This appendix presents details of our test protocols as well as the inputs and solvers se-
lected for study.

Measurement and metrics

The hybrid DW solvers evaluated here have code components that run on three types of
platforms: CPU, GPU, and QPU. In everyday use, for some given input, a front-end portfo-
lio solver selects some number of solvers (programs implementing specific heuristics) and
some number of CPU and GPU platforms to be used in the computation.

At present, HSS contains two portfolio solvers, one from the original launch and an up-
graded version that reads larger inputs and incorporates an Advantage QPU instead of
the 2000Q QPU. In our tests, both portfolios are set to choose one hybrid solver for all
inputs, which we call versionl and version2. Both versions run in asynchronously in a
distributed computing framework, sending quantum queries to their respective quantum
processors and incorporating QPU responses when they arrive.

Naturally this arrangement creates considerable challenges in obtaining accurate and re-
peatable runtime measurements. Our policies for measuring and reporting runtimes were
as follows:

* The CPU and GPU code ran in a p3.2xlarge AWS instance containing an NVIDIA
Tesla V100 platform with 16GB memory, 60Gb of RAM and eight virtual cores; and an
Intel Xeon(R) E5-2686 v4 (Broadwell) platform. CPU time measurements were taken
with hyperthreading turned on.

¢ Programming languages used in this system include python, cython, C++, and C++
with the CUDA toolkit. C++ code was always compiled with the -Ofast or -O3 opti-
mization flags; the CUDA compiler has optimization turned on by default.

¢ Quantum queries were sent to a D-Wave 2000Q low-noise system (versionl and to
a D-Wave Advantage system version2 located at D-Wave headquarters in Burnaby,
BC. Quantum algorithm parameters were set to default values throughout: 20us an-
neal time and 1000 reads per input.

¢ Elapsed computation time for the portfolio solver is specified by the user as a time
limit T. The global runtime clock starts and finishes on the same platform, in a single
thread that forks the processes needed to invoke solvers on other platforms. The child
processes are responsible for monitoring their own progress and sending solutions to
the parent process before the time limit T is reached.

e Since individual solvers work in parallel and communicate asynchronously with the
QPU, total computation time does not equal the sum of component times. Note that
this design ensures that computational progress is not stalled by issues such as net-
work latency or contention for the QPU, which are impossible to control or predict.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

A2

MQLib

The MQLib repository [7] contains 3296 inputs for Max Cut or QUBO problems and a
collection of 10 Max Cut and 27 QUBO heuristic solvers. The solvers are implemented in
C++ and run on standard CPU cores. It also contains an extensive collection of support
tools for, e.g., translating inputs between problem formulations, running tests, analyzing
results, and selecting the best solvers for any given input.

We did not carry out independent tests using these solvers, but instead refered to published
performance data available in the MQLib repository. In particular, the /data/ directory
contains a recommended run time limit T for each input, and a reference cost obtained by
running all 37 solvers the time limit T, over five independent trials each. Our tests use the
same time limit and record solution costs obtained in five independent trials of the DW
hybrid solver.

Solvers MQLib runtime measurements on 37 solvers were performed in 2018 using AWS
cores, as follows [7]:

We performed heuristic evaluation using 60 m3.medium Ubuntu machines from
the Amazon Elastic Compute Cloud (EC3), which have Intel Xeon E5-2670 pro-
cessors and 4 GiB of memory; code was compiled with the g++ compiler using
the -03 optimization flag.

The authors report that their full evaluation (37 solvers and 3296 inputs) required 2 CPU-
years of processing power, 12.4 days of computation (over 60 machines), and cost $1196.00
in AWS compute time.

Inputs For the “standard” test set described in Section 2, we selected 45 instances from
the MQLib repository using the following procedure.

¢ The MQLib designers noted that results tend to be similar or identical when all
solvers are given either too little or too much time to work on a given instance. Thus,
to each instance they assign a suggested runtime T that can be used to distinguish
performance among solvers.

Our selection protocol considered only “hard” instances with a maximum recom-
mended runtime of T = 20 minutes, and instances for which at most two of the 37
solvers found the best reported solution. On 42 of the 45 inputs exactly one solver
found that solution; on the remaining three inputs, two solvers tied.

* Inputs that are unconnected, contain fewer than n = 1000 variables, or more than
n = 10,000 variables, were not selected for the standard set.

¢ The remaining input pool was partitioned into groups according to size [small (1000 <
n < 2500), medium (2500 < n < 5000) and large (5000 < n < 10000)] and edge den-
sity [sparse (d < 0.1M), medium (0.1M < d < 0.5M), and dense (d > 0.5M)]. Here d
is the mean edge density of the instance and M is the number of edges in a complete
graph with n nodes. This yields nine input groups: for each group we select 5 inputs
uniformly at random after filtering as described above.

Copyright © D-Wave Systems Inc.

HSS Advantage Update

¢ Inputs stored in Max Cut form in MQLib were translated to an equivalent QUBO
form for testing on our system.

For the “extra-large” input set we filtered the MQLib input set as described above. We se-
lected 20 inputs uniformly at random from the resulting filtered set, with sizes n > 10, 000.
This selection process included the largest input in MQLib, which contains n = 53,130
nodes.

The extra-large MQLib inputs are extremely sparse, and fail to meet our criteria for medium
and dense inputs. The selected inputs in this group have sizes in range 24,052 < n <
53,130, and densities in range .000095M < d < .0031M

Both sets of inputs, translated from MQLib (Max Cut) format to D-Wave DIMOD (QUBO)
format, are available at the D-Wave github site github.com/dwavesystems/hss-overview-benchmarks.

Copyright © D-Wave Systems Inc.

	Introduction
	Operational overview
	Quantum acceleration of classical heuristics

	Performance overview
	Summary
	References
	Details of the experiments
	Measurement and metrics
	MQLib

