HETEROGENEOUS QUANTUM COMPUTING FOR SATELLITE OPTIMIZATION

GIDEON BASS
BOOZ ALLEN HAMILTON

September 2017
Special thanks to:

- Brad Lackey (UMD/QuICS) for advice and suggestions and
- USRA for D-Wave access

COLLABORATORS AND PARTNERS
Our Team

JD Dulny
Senior Lead Scientist
dulnyiii_joseph@bah.com

Ray Hensberger
Principal
hensberger_raymond@bah.com

Graham Gilmer
Senior Associate
gilmer_graham@bah.com

Gideon Bass
Lead Scientist
bass_gideon@bah.com

Casey Tomlin
Lead Scientist
Tomlin_casey@bah.com

Josh Sullivan
Officer
sullivan_joshua@bah.com

Vaibhaw Kumar
Staff Scientist
kumar_vaibwaw@bah.com
AGENDA

+ Quantum Annealing in the field
+ Problem Statement
+ Results
+ Conclusions
QUANTUM ANNEALING HAS MANY REAL-WORLD APPLICATIONS
HOWEVER MOST RESEARCH HAS BEEN THEORETICAL

Traffic flow optimization using a quantum annealer

Florian Neukarta,1, David Von Dollona, Gabriele Compostellaa, Christian Seidela, Sheir Yarkonib, and Bob Parneya

aVolkswagen Group of America, San Francisco, USA
bVolkswagen DataLab, Munich, Germany
cD-Wave Systems, Inc., Burnaby, Canada

Abstract

Quantum annealing algorithms belong to the class of meta-heuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs) produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity

On the readiness of quantum optimization machines for industrial applications

Alejandro Perdomo-Ortiza,1,2,3, Alexander Feldmana, Asier Ozaetaa, Sergei V. Isakova, Zheng Zhua, Bryan O’Gormana,1,3,5, Helmut G. Katzgrabera,3,5, Alexander Diddensa, Hammut Nevena,3, Johan de Klerka, Brad Lackeya,3,5,6,7,8 and Rupak Biswasa,3

aQuantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, California 94035, USA
bESRA Research Institute for Advanced Computer Science (RIACS), Mountain View, California 94043, USA
cDepartment of Computer Science, University College London, WC1E 6BT London, UK
dPalo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, USA
eQC Ware Corp., 125 University Ave., Suite 200, Palo Alto, California 94301, USA
fGoogle Inc., 8002 Zurich, Switzerland
gDepartment of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA
hBerkeley Center for Quantum Information and Computation, Berkeley, California 94720 USA
iDepartment of Chemistry, University of California, Berkeley, California 94720 USA
jIBM Information Technologies (QRO), Vancouver, British Columbia, Canada V6B 4W1
kSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
lForschungszentrum Jülich, Jülich, Germany
mGoogle Inc., Venice, California 90291, USA
nJoint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
oDepartments of Computer Science and Mathematics, University of Maryland, College Park, Maryland 20742, USA
pNIST Security Agency, Ft. George G. Meade, Maryland 20725, USA
qNASA Ames Research Center, Moffett Field, California 94035, USA

aGoogle Inc., Venice, California 90291, USA
bJoint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
cDepartments of Computer Science and Mathematics, University of Maryland, College Park, Maryland 20742, USA
dNational Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

quantum annealing and, in particular, quantum annealing’s potential to outperform current classical optimization algorithms. Benchmarking of these devices has been controversial. Initially, however, these were quickly shown to be not well suited to detect benchmarking shifted to carefully crafted synthetic problems designed...
Satellite Coverage
Quantum Optimization
SATELLITE COVERAGE OPTIMIZATION

Summary: Group satellite together in such a way as to maximize coverage.

Data: For any possible grouping of satellites, a coverage percentage

Goal: Assign each of N satellites to k groups, such that total mean coverage is maximized

+ Satellites change position and require constant re-optimization

+ Brute force solving is out of the question; even trivial subsets of the satellites form too many combinations to check.

+ Quantum technology offers a promise to perform combinatorial optimization much faster, while yielding better coverage outcomes.
THE WEIGHTED K-CLIQUE PROBLEM

+ This problem can be reformulated as a graph problem, called the **k-clique problem**

+ Each potential group of satellites in a sub-constellation can be considered a node on a graph
 - Each node is given a weight equal to the coverage provided
 - If both sub-constellation use the same satellite, the nodes are unconnected
 - The goal is thus to find the k nodes with the highest total weight that are all mutually connected (a "clique")

+ This problem can then be expressed as a QUBO, and sent to the quantum computer
DESIGNING THE QUBO

Constraints:

1. Choose only nodes that are connected
2. Maximize the sum of coverages for each group chosen
3. Choose a number of qubits equal to the number of available satellites

Each (logical) qubit represents a potential grouping of satellites

Connections represent a grouping that is non-overlapping (does not use the same satellite in multiple groups)

\[
H = \sum_{i<j} 2(w_i + w_j)
\]

\[
H = \sum_i -AW_i x_i
\]

\[
H = W \left(\sum_i x_i - 8 \right)^2 = 64W - \sum_i 8W x_i + \sum_{i<j} x_i x_j
\]

W is the qubit maximum weight
This satellite optimization problem is a prime candidate for a quantum approach when used in concert with classical computing resources.

The application to satellites could be the first major quantum success when applied to a real-world full-scale problem.

However, with current numbers, we would still need 10^4-10^5 qubits to fully embed this problem.

Thus, we created a heterogeneous approach that combines classical processing and quantum annealing.
HETEROGENEOUS TECHNIQUES: TWO APPROACHES

Genetic Algorithm

Quantum Computer

Post-processing

GA + ANNEAL

Quantum Computer

Post-processing

PRUNE/RANDOM + ANNEAL

All sub-constellations

Remove low coverage/Pick random

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

All sub-constellations

Remove low coverage/Pick random

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

Genetic Algorithm

Quantum Computer

Post-processing

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

All sub-constellations

Remove low coverage/Pick random

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

Genetic Algorithm

Quantum Computer

Post-processing

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

All sub-constellations

Remove low coverage/Pick random

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

Genetic Algorithm

Quantum Computer

Post-processing

GA + ANNEAL

PRUNE/RANDOM + ANNEAL

All sub-constellations

Remove low coverage/Pick random

GA + ANNEAL

PRUNE/RANDOM + ANNEAL
Heterogeneous Computing Models

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Heuristics</td>
<td>Can provide fairly good results. Can be run on classical machine.</td>
<td>Cannot be run on current QA devices, no quantum speed-up, scaling uncertain</td>
</tr>
<tr>
<td>GA pre-processing</td>
<td>Searches full decision space, produces solid results</td>
<td>Middle of the road performance and speed, many parameters to tune</td>
</tr>
<tr>
<td>Prune and Anneal</td>
<td>Very good results in good time, most similar to existing technique</td>
<td>Does not explore full solution space, requires domain knowledge</td>
</tr>
</tbody>
</table>
RESULTS

COMPARISON: QUANTUM SIMULATOR

- An 80% coverage (red) is the minimum acceptable average.
- The eight colored bars represent individual sets, black bar (and dotted line) is overall average.
- **Quantum approach is faster** and finds a significantly better results.
RESULTS COMPARISON: D-WAVE

- Results are nearly constant with processing time
- Results are highly dependent on pre-processing method (color)
 - 80% is minimal acceptable
 - 90% is likely near the true maximum.
RESULTS COMPARISON: D-WAVE

- D-Wave time makes up most of the time, GA adds a little more

- Including D-Wave’s “Virtual Full Yield” does not significantly change performance while improving portability
SUMMARY

<table>
<thead>
<tr>
<th>Method</th>
<th>Uses Domain-Knowledge</th>
<th>Time Needed</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prune + Anneal</td>
<td>✓</td>
<td>Very Little</td>
<td>90%</td>
</tr>
<tr>
<td>GA + Anneal</td>
<td>X</td>
<td>Some</td>
<td>80-85%</td>
</tr>
<tr>
<td>Random + Anneal</td>
<td>X</td>
<td>Very Little</td>
<td>75-80%</td>
</tr>
</tbody>
</table>

- The D-Wave **functions best as a co-processor**
- Performance is highly dependent on problem formulation, classical processing step
- Quantum portion does appear to provide significant improvement.
As problems and datasets grow, modern computing systems have had to scale with them. Quantum computing offers a totally new and potentially disruptive computing paradigm.

For problems like this satellite optimization problem, heterogeneous quantum techniques will be required to solve the problem at larger scales.

Preliminary results on this problem using heterogeneous classical/quantum solutions are very promising.

Exploratory studies in this area have the potential to break new ground as one of the first applications of quantum computing to a real-world problem.
Thank You

GIDEON BASS
BOOZ ALLEN HAMILTON

HTTPS://ARXIV.ORG/ABS/1709.05381