
CONTACT

Corporate Headquarters
3033 Beta Ave
Burnaby, BC V5G 4M9
Canada
Tel. 604-630-1428

US O�ce
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Overview

This document explores the importance of the required parameters
that are involved in programming the D-Wave quantum processing unit
(QPU).

Programming the D-Wave QPU: Parameters for Beginners

WHITEPAPER

2020-09-17

14-1045A-A
D-Wave Whitepaper Series

Notice and Disclaimer
D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this doc-
ument, any documents referenced herein, and its proprietary technology, including copyright,
trademark rights, industrial design rights, and patent rights. D-Wave trademarks used herein
include D-WAVE®, Leap™ quantum cloud service, Ocean™, Advantage™ quantum system,
D-Wave 2000Q™, D-Wave 2X™, and the D-Wave logo (the “D-Wave Marks”). Other marks used in
this document are the property of their respective owners. D-Wave does not grant any license, assign-
ment, or other grant of interest in or to the copyright of this document or any referenced documents,
the D-Wave Marks, any other marks used in this document, or any other intellectual property rights
used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU i

Contents
1 Introduction 1

2 Number of Reads 1

3 Chain Strength 4
3.1 What is a chain? . 4
3.2 What is a chain break? . 8

4 Writing an Initial Python Program for the QPU 9

5 Running the program on the QPU 10

6 Using the Problem Inspector to Show Embedded Chains 11

7 Increasing the Chain Strength 13

8 Results at Chain Strength = 1000 13

9 What if the Chain Strength is too Large? 14

References 16

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU ii

1 Introduction
The D-Wave quantum processing unit (QPU) accepts many parameters that you can spec-
ify when submitting a problem. Many of these parameters are not required for basic use of
the system; they are associated with advanced research into performance tuning of quan-
tum annealing. This document focuses on the small set of parameters that are required
for almost every problem. For a full list of supported parameters, see the D-Wave Solver
Properties and Parameters Guide [1].

2 Number of Reads
The num reads parameter tells the QPU how many times to run a problem, once the prob-
lem has been programmed onto the QPU hardware. Each run of a problem is also known as
a read, or an annealing cycle. The default, and the maximum, vary from system to system.
For the D-Wave 2000Q, the default is 10, and the maximum is 10000. Each system’s values
can be obtained programmatically from the system [2].

The typical timescale for individual reads of a problem is microseconds, so it is inexpensive
to increase the number of reads. Even with 1000 reads, the timescale is milliseconds, and
you won’t use much time on the system at that rate. There are two main reasons for using
larger values for num reads. First, the QPU is probabilistic, and there is no guarantee that a
particular solution will emerge on a given read of the QPU. A larger number of reads will
increase the probability that diverse solutions will be returned.

To see this, let’s look at a small graph coloring problem. This is the graph of the problem:

The goal of this program is to assign colors to each node in the graph so that no neighboring

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 1

node has the same color. Here is a Python program to solve this problem, written using D-
Wave’s Ocean package [3]:

import networkx as nx

import dwave_networkx as dnx

from dwave.system.samplers import DWaveSampler

from dwave.system.composites import EmbeddingComposite

from dwave_networkx.algorithms.coloring import min_vertex_color_qubo

sampler = EmbeddingComposite(DWaveSampler())

G = nx.Graph()

G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5),

(4, 6), (5, 6), (6, 7)])

Q = min_vertex_color_qubo(G)

sampleset = sampler.sample_qubo(Q, num_reads=100)

for sample, energy, num_occ in sampleset.data([’sample’, ’energy’,

’num_occurrences’]):

colors_chosen = [i for i in sample if sample[i] == 1]

print(colors_chosen, energy, num_occ)

D-Wave’s Ocean package dwave networkx has a method, min vertex color qubo, that gen-
erates the problem’s quantum unconstrained binary optimization model (QUBO), and then
we solve the problem on the QPU. One solution looks like this:

A recent run of this problem with num reads = 10 produced 5 different solutions; another,
with num reads = 100, produced 18 different solutions. For a problem like this, with many

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 2

valid solutions, it is clear that increasing num reads provides more diversity in the returned
solutions.

Second, larger values of num reads may make statistical trends apparent. Consider a very
small QUBO problem involving 2 qubits, which are constrained to favor solutions in which
the qubits have the same value ((0, 0) and (1, 1)) as opposed to solutions in which the qubits
have opposite values ((0, 1) and (1, 0)). Here is an Ocean program for this problem:

import dimod

from dwave.system.composites import EmbeddingComposite

from dwave.system.samplers import DWaveSampler

Q = {(0, 0): 1, (1, 1): 1, (0, 1): -2}

sampler = EmbeddingComposite(DWaveSampler())

bqm = dimod.BinaryQuadraticModel.from_qubo(Q)

response = sampler.sample(bqm, num_reads=1000)

print(response)

For two equivalent ground state solutions (both with energy zero), we expect that the QPU
will find 500 solutions of (0, 0) and 500 solutions of (1, 1). Because of the probabilistic nature
of the QPU, however, on any individual run, we do not expect precisely 500 of each. Rather,
we expect that, on average, we will get 500 of each.

Repeated runs of this program can show substantial variability – totals like 750 and 250,
for instance. If a problem runs only once, you might make unwarranted conclusions about
the trending of the results. Over many samples, though, we expect the totals to average out
to 500.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 3

3 Chain Strength
The chain strength parameter specifies the relative strength of chains embedded on the
QPU, which become important when a problem’s graph does not map one-to-one, prob-
lem variable to physical qubit, onto the QPU. Since most problem graphs have different
topology than the QPU’s architecture, the chain strength parameter is required for most
problems.

3.1 What is a chain?

The D-Wave QPU is comprised of a grid of qubits and couplers. The D-Wave 2000Q imple-
ments the Chimera graph:

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 4

Advantage implements the Pegasus graph structure:

The Advantage graph is more complex; please see [4].

A small problem helps us understand how to map a problem onto these architectures.
Consider a problem in which we randomly place N = 16 objects into a square, and connect
the objects with an edge only if the distance between them is smaller than a certain radius,
which we choose to be 0.5, half of the distance across the square. The resulting graph is
known as a random geometric graph [5], and a typical random geometric graph looks like
this:

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 5

The question is whether this graph would “fit” onto either D-Wave architecture: that is,
whether we could map each node in the graph (for example, 12, or 15) onto a single physi-
cal qubit.

D-Wave provides embedding software in its Ocean toolkit [3]. If we run that software, and
embed this problem onto the Chimera graph of the D-Wave 2000Q QPU, we are likely to
get an embedding that looks like this:

Notice the different colors, and how each color may have a few physical qubits (circles)
associated with it. For example, consider the three bright green qubits in the center of the
picture. These three qubits were selected by the D-Wave embedding algorithm to together
represent one of the nodes (0-15) in the problem graph above. Notice that the three qubits
are connected; this connection is known as a chain. We say that the three qubits have been
chained together, to represent a single logical node. This allows the logical node to reach
(have a coupler in common with) other qubits, in the graph of the overall problem.

Looking at the picture, we can see that the D-Wave embedding algorithm used chains of
length 2, 3, 4 and 5, to be able to represent the problem graph. (For example, there is a chain
of length 3 represented by the color cyan; there is a chain of length 2 represented by the
color violet.)

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 6

Now we can also embed this problem on the Advantage architecture:

The embedding on the Advantage architecture uses fewer qubits, and the chains are shorter.
This will be discussed further in the next section.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 7

3.2 What is a chain break?

This section introduces the notion of a chain break and introduces the chain strength

parameter.

First, let’s return to the problem in Section 3.1, the random geometric graph:

Our goals are to divide the graph into two subsets (also known as partitions), which we
want to have equal size, and to minimize the number of links between the partitions. This
problem is known as graph partitioning, and the general problem is NP-hard [6].

To run this problem on the QPU, we need to express the problem either as a QUBO prob-
lem or as an Ising model. We choose the QUBO approach; to do this, we write the graph
partitioning problem as a sum of two terms. The first term is something that we want to
minimize – in this case, the number of links between the partitions. The second term is
composed of constraints, which are mathematical expressions on binary variables (0 or 1).
We want the quantum computer to adjust the binary variables and return a solution that
minimizes the first term and satisfies all the constraints.

The QUBO for graph partitioning has the following form:

min ∑
(i,j)∈E

(xi + xj − 2xixj) + γ

(
−N ·

N

∑
i

xi +
N

∑
i

xi +
N

∑
i

∑
j>i

2xixj

)

where xi is the value of the ith binary variable, N = 16 objects, and γ is the Lagrange
parameter. The Lagrange parameter is adjusted depending on the relative strengths of the
first term and the constraints, which are represented by the term in the parenthesis. A good
value for the Lagrange parameter can be found by trial-and-error, but for this example, we
know that γ = 60 will be acceptable.

In the previous section, when we discussed chains, we said that the member qubits are
chained together. This means that they are mathematically constrained to have the same
value: 0 or 1 (QUBO); or -1 or 1 (Ising). To accomplish this, the parameter chain strength

is used, which gives the chain its ability to compete with the relative strengths of the first

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 8

term in the QUBO and the constraints. If the chain strength parameter is too small, the
qubits in each chain won’t have the same value, and the required relationships between
qubits won’t work as intended. A chain in which qubits take different values is called a
broken chain, and the problem won’t be quite the same as the graph that the programmer
wants to solve.

Conversely, if the chain strength parameter is too large, the embedding terms will dom-
inate the graph partitioning problem details, and we might lose the ability to study the
intended problem. It is clear that the chain strength parameter must be chosen carefully:
not too small and not too large.

Furthermore, when chains are long, it is challenging to find a value for the chain strength

parameter that is strong enough to balance the other terms in the problem. Because the Pe-
gasus architecture in Advantage requires shorter chains than does the Chimera architecture
to embed the same problem, the impact of this effect is reduced.

In the next section, we will write a program to solve this problem, and will explore broken
chains and their effects.

4 Writing an Initial Python Program for the QPU
In this section, we write a program using the Ocean software [3], D-Wave’s open-source
Python SDK. The program includes the following lines of code:

import dwave.inspector

dwave_sampler = FixedEmbeddingComposite(DWaveSampler(solver={’qpu’: True}),

embedding)

bqm = dimod.BinaryQuadraticModel.from_qubo(Q, offset=offset)

sampleset = dwave_sampler.sample(bqm, num_reads=1000)

dwave.inspector.show(sampleset)

This code fragment performs the following steps:

1. Import the D-Wave problem inspector [7], so that we can graphically display the
results.

2. Arrange for the QPU to solve the problem, using the DWaveSampler object [2] in
Ocean [3]

3. Embed [8] the problem onto the graph structure of the QPU with FixedEmbedding-
Composite [9], using an embedding that we found using a different Ocean package,
minorminer [10].

4. Solve the problem, with 1000 reads for each, using dwave sampler.sample [11].

5. Display the problem in the D-Wave problem inspector.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 9

5 Running the program on the QPU
Here are the results from an initial run of the above Python program, including the com-
mand line output and the view from the problem inspector.

Number of nodes in one set is 8, in the other, 8.

The number of links between partitions is 19.0.

Percentage of valid solutions is 0.1.

Percentage of samples with high rates of breaks is 84.8.

Here are our observations from these results:

• The partitions have equal size (8 nodes in each).

• There are 19 links between the partitions.

• There is one valid solution (0.1% for 1000 samples).

• All chains in the problem are broken. A broken chain is indicated by the white and
orange zig-zag symbol on a problem variable.

Let’s focus on the last observation. We discussed earlier that broken chains may be fixed
by increasing the chain strength. First, we will set up the problem inspector to visualize the
problem further.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 10

6 Using the Problem Inspector to Show
Embedded Chains
The problem we chose is embedded onto the D-Wave QPU, and the problem inspector
gives us a view of the embedded graph on the D-Wave QPU’s topology:

Note the gray chains connecting groups of qubits. We want each chain to contain qubits
that are the same color, that is, either all 0 or all 1. As discussed earlier, a chain is broken if
it connects qubits of different colors.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 11

By enabling another option in the problem inspector (on the toolbar on the left of the
screen) to show broken chains in red, we can see that all of the chains are broken.

The way the code in this example works is as follows:

• Each logical variable – that is, each binary variable xi in the original graph – is repre-
sented by a chain of physical qubits on the QPU.

• We want all the physical qubits in a given chain to have the same value, all 0 or all 1,
at the end of each read. (annealing cycle) If they agree, then it is easy to map the qubit
values back to the variable value in the original problem. If not, then postprocessing
software (chain break fixing) is used to guess the correct assignment of the variable.

• The qubit chains are constrained to have the same value, 0 or 1, by a single parameter,
chain strength. This is the weight that is assigned to the gray edges.

• If the chain strength parameter is too small, the physical qubits in the chain do not
take the same value at the end of the annealing process, and the chain breaks.

• If the chains break, the solutions returned from the QPU may be degraded and sub-
optimal.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 12

We need to consider another question. If all the chains are broken in the solution, how
could the solution be valid, with all the constraints satisfied, and the objective minimized?

The answer is that when we used the FixedEmbeddingComposite package in our code,
it automatically used chain break fixing software to guess the correct assignment to the
variables.

The default algorithm for chain break fixing is majority vote, and in this case, it worked
well enough to find a valid solution.

In the next section, we will increase the chain strength parameter to look for valid solu-
tions without chain breaks.

7 Increasing the Chain Strength
We change the chain strength parameter in the code:

sampleset = dwave_sampler.sample(bqm,num_reads=1000,

chain_strength=chain_strength_value)

How do we know what is a reasonable value for the chain strength parameter? A good
first estimate is to set it to equal to something near the largest absolute value in the prob-
lem’s QUBO. In this graph partitioning problem, the QUBO entries range from -896 to
about 120. Therefore, a good first guess for the chain strength parameter is 1000.

8 Results at Chain Strength = 1000
You may have noticed that in our first program above, we didn’t set the chain strength

parameter. The default value was therefore used, which is 1. Let’s see what happens when
we submit the problem with a larger value.

Number of nodes in one set is 8, in the other, 8.

The number of links between partitions is 16.0.

Percentage of valid solutions is 0.1.

Percentage of samples with high rates of breaks is 0.0.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 13

We see a number of improvements:

• No broken chains

• No warnings

• We confirmed that the number of links between partitions is correct

The increased chain strength parameter, in this case, has eliminated the problems that
we saw earlier. We may have hoped for a larger percentage of valid solutions. However,
it is not unusual in some problems that we do not get many valid solutions. At the higher
chain strength, though, we can be confident that the valid solution was not found fortu-
itously by chain break fixing as it was in Section 6.

9 What if the Chain Strength is too Large?
In the previous section, we saw that increasing the chain strength parameter eliminated
broken chains and provided a higher percentage of valid solutions to the problem. How-
ever, what would happen if the chain strength is too large?

First, after the problem is submitted to the QPU, the autoscaling feature [12] scales all
weights in a given QUBO so that everything lies in the range between [-1, +1]. If the chain -

strength parameter is smaller than the largest QUBO weight, the autoscaling feature di-
vides all terms by the largest QUBO weight. If it is larger than the largest QUBO weight,
the autoscaling will divide by the value of the chain strength parameter. In this manner,
all terms in the QUBO, including the chain terms, will be in the range [-1, 1].

Thus, if chain strengths are larger than the largest absolute value in the QUBO, the chain
strength-related terms are set to 1, and the QUBO weights are proportionally smaller. As
chain strengths increase, the individual QUBO terms, which were introduced to express the
terms we want to minimize, and the problem constraints, shrink to near zero. Each chain

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 14

begins to act like a separate entity, and the QUBO approaches a problem of N independent
variables that do not interact. Such a QUBO would have 2N optimal solutions, all with the
same energy. It no longer represents the original problem.

In this example problem, increasing the chain strength parameter to 1000 does not show
this behavior. Nonetheless, we should try to keep the chain strength parameter within a
reasonable range: large enough to avoid breaks, but small enough to maintain the impor-
tance of the QUBO terms.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 15

References
1 D-Wave system documentation: solver properties and parameters, https://docs.dwavesys.com/docs/latest/doc_solver_ref.html

(2020).

2 Ocean documentation: samplers, https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/samplers.html (2020).

3 Ocean documentation, https://docs.ocean.dwavesys.com (2020).

4 K. Boothby, P. Bunyk, J. Raymond, and A. Roy, Next-generation topology of D-Wave quantum processors, tech. rep. 14-1026A-C (D-Wave
Technical Report Series, 2019).

5 Wikipedia contributors, Random geometric graph — Wikipedia, the free encyclopedia, [Online; accessed 17-September-2020], 2020.

6 A. Lucas, “Ising formulations of many np problems,” Frontiers in Physics 2, 5 (2014).

7 Ocean documentation: using the problem inspector, https://docs.ocean.dwavesys.com/en/latest/examples/inspector_graph_
partitioning.html (2020).

8 J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding graph minors,” arXiv preprint arXiv:1406.2741 (2014).

9 Ocean documentation: FixedEmbeddingComposite, https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/
composites.html#fixedembeddingcomposite (2020).

10 Ocean documentation: minorminer, https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/ (2020).

11 Ocean documentation: DWaveSampler.sample, https : / / docs . ocean . dwavesys . com / projects / system / en / stable / reference /
generated/dwave.system.samplers.DWaveSampler.sample.html#dwave.system.samplers.DWaveSampler.sample (2020).

12 D-Wave system documentation: auto-scale, https://docs.dwavesys.com/docs/latest/c_solver_1.html#asc (2020).

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 16

https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/samplers.html
https://docs.ocean.dwavesys.com
https://docs.ocean.dwavesys.com/en/latest/examples/inspector_graph_partitioning.html
https://docs.ocean.dwavesys.com/en/latest/examples/inspector_graph_partitioning.html
https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/composites.html#fixedembeddingcomposite
https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/composites.html#fixedembeddingcomposite
https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/
https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/generated/dwave.system.samplers.DWaveSampler.sample.html#dwave.system.samplers.DWaveSampler.sample
https://docs.ocean.dwavesys.com/projects/system/en/stable/reference/generated/dwave.system.samplers.DWaveSampler.sample.html#dwave.system.samplers.DWaveSampler.sample
https://docs.dwavesys.com/docs/latest/c_solver_1.html#asc

	Introduction
	Number of Reads
	Chain Strength
	What is a chain?
	What is a chain break?

	Writing an Initial Python Program for the QPU
	Running the program on the QPU
	Using the Problem Inspector to Show Embedded Chains
	Increasing the Chain Strength
	Results at Chain Strength = 1000
	What if the Chain Strength is too Large?
	References

