
CONTACT

Corporate Headquarters
3033 Beta Ave
Burnaby, BC V5G 4M9
Canada
Tel. 604-630-1428

US O�ce
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Overview

This document explores the importance of the required parameters
that are involved in programming the D-Wave quantum processing unit
(QPU).

Programming the D-Wave QPU: Parameters for Beginners

WHITEPAPER

2020-09-17

14-1045A-A
D-Wave Whitepaper Series

Notice and Disclaimer
D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this doc-
ument, any documents referenced herein, and its proprietary technology, including copyright,
trademark rights, industrial design rights, and patent rights. D-Wave trademarks used herein
include D-WAVE®, Leap™ quantum cloud service, Ocean™, Advantage™ quantum system,
D-Wave 2000Q™, D-Wave 2X™, and the D-Wave logo (the “D-Wave Marks”). Other marks used in
this document are the property of their respective owners. D-Wave does not grant any license, assign-
ment, or other grant of interest in or to the copyright of this document or any referenced documents,
the D-Wave Marks, any other marks used in this document, or any other intellectual property rights
used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU i

Contents
1 Introduction 1

2 Number of Reads 1

3 Chain Strength 4
3.1 What is a chain? . 4
3.2 What is a chain break? . 8

4 Writing an Initial Python Program for the QPU 9

5 Running the program on the QPU 10

6 Using the Problem Inspector to Show Embedded Chains 11

7 Increasing the Chain Strength 13

8 Results at Chain Strength = 1000 13

9 What if the Chain Strength is too Large? 14

References 16

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU ii

1 Introduction
The D-Wave quantum processing unit (QPU) accepts many parameters that you can spec-
ify when submitting a problem. Many of these parameters are not required for basic use of
the system; they are associated with advanced research into performance tuning of quan-
tum annealing. This document focuses on the small set of parameters that are required
for almost every problem. For a full list of supported parameters, see the D-Wave Solver
Properties and Parameters Guide [1].

2 Number of Reads
The num reads parameter tells the QPU how many times to run a problem, once the prob-
lem has been programmed onto the QPU hardware. Each run of a problem is also known as
a read, or an annealing cycle. The default, and the maximum, vary from system to system.
For the D-Wave 2000Q, the default is 10, and the maximum is 10000. Each system’s values
can be obtained programmatically from the system [2].

The typical timescale for individual reads of a problem is microseconds, so it is inexpensive
to increase the number of reads. Even with 1000 reads, the timescale is milliseconds, and
you won’t use much time on the system at that rate. There are two main reasons for using
larger values for num reads. First, the QPU is probabilistic, and there is no guarantee that a
particular solution will emerge on a given read of the QPU. A larger number of reads will
increase the probability that diverse solutions will be returned.

To see this, let’s look at a small graph coloring problem. This is the graph of the problem:

The goal of this program is to assign colors to each node in the graph so that no neighboring

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 1

node has the same color. Here is a Python program to solve this problem, written using D-
Wave’s Ocean package [3]:

import networkx as nx

import dwave_networkx as dnx

from dwave.system.samplers import DWaveSampler

from dwave.system.composites import EmbeddingComposite

from dwave_networkx.algorithms.coloring import min_vertex_color_qubo

sampler = EmbeddingComposite(DWaveSampler())

G = nx.Graph()

G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5),

(4, 6), (5, 6), (6, 7)])

Q = min_vertex_color_qubo(G)

sampleset = sampler.sample_qubo(Q, num_reads=100)

for sample, energy, num_occ in sampleset.data([’sample’, ’energy’,

’num_occurrences’]):

colors_chosen = [i for i in sample if sample[i] == 1]

print(colors_chosen, energy, num_occ)

D-Wave’s Ocean package dwave networkx has a method, min vertex color qubo, that gen-
erates the problem’s quantum unconstrained binary optimization model (QUBO), and then
we solve the problem on the QPU. One solution looks like this:

A recent run of this problem with num reads = 10 produced 5 different solutions; another,
with num reads = 100, produced 18 different solutions. For a problem like this, with many

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 2

valid solutions, it is clear that increasing num reads provides more diversity in the returned
solutions.

Second, larger values of num reads may make statistical trends apparent. Consider a very
small QUBO problem involving 2 qubits, which are constrained to favor solutions in which
the qubits have the same value ((0, 0) and (1, 1)) as opposed to solutions in which the qubits
have opposite values ((0, 1) and (1, 0)). Here is an Ocean program for this problem:

import dimod

from dwave.system.composites import EmbeddingComposite

from dwave.system.samplers import DWaveSampler

Q = {(0, 0): 1, (1, 1): 1, (0, 1): -2}

sampler = EmbeddingComposite(DWaveSampler())

bqm = dimod.BinaryQuadraticModel.from_qubo(Q)

response = sampler.sample(bqm, num_reads=1000)

print(response)

For two equivalent ground state solutions (both with energy zero), we expect that the QPU
will find 500 solutions of (0, 0) and 500 solutions of (1, 1). Because of the probabilistic nature
of the QPU, however, on any individual run, we do not expect precisely 500 of each. Rather,
we expect that, on average, we will get 500 of each.

Repeated runs of this program can show substantial variability – totals like 750 and 250,
for instance. If a problem runs only once, you might make unwarranted conclusions about
the trending of the results. Over many samples, though, we expect the totals to average out
to 500.

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 3

3 Chain Strength
The chain strength parameter specifies the relative strength of chains embedded on the
QPU, which become important when a problem’s graph does not map one-to-one, prob-
lem variable to physical qubit, onto the QPU. Since most problem graphs have different
topology than the QPU’s architecture, the chain strength parameter is required for most
problems.

3.1 What is a chain?

The D-Wave QPU is comprised of a grid of qubits and couplers. The D-Wave 2000Q imple-
ments the Chimera graph:

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 4

	Introduction
	Number of Reads
	Chain Strength
	What is a chain?
	What is a chain break?

	Writing an Initial Python Program for the QPU
	Running the program on the QPU
	Using the Problem Inspector to Show Embedded Chains
	Increasing the Chain Strength
	Results at Chain Strength = 1000
	What if the Chain Strength is too Large?
	References

