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Overview

This document explores the importance of the required parameters
that are involved in programming the D-Wave quantum processing unit
(QPU).
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1 Introduction
The D-Wave quantum processing unit (QPU) accepts many parameters that you can spec-
ify when submitting a problem. Many of these parameters are not required for basic use of
the system; they are associated with advanced research into performance tuning of quan-
tum annealing. This document focuses on the small set of parameters that are required
for almost every problem. For a full list of supported parameters, see the D-Wave Solver
Properties and Parameters Guide [1].

2 Number of Reads
The num reads parameter tells the QPU how many times to run a problem, once the prob-
lem has been programmed onto the QPU hardware. Each run of a problem is also known as
a read, or an annealing cycle. The default, and the maximum, vary from system to system.
For the D-Wave 2000Q, the default is 10, and the maximum is 10000. Each system’s values
can be obtained programmatically from the system [2].

The typical timescale for individual reads of a problem is microseconds, so it is inexpensive
to increase the number of reads. Even with 1000 reads, the timescale is milliseconds, and
you won’t use much time on the system at that rate. There are two main reasons for using
larger values for num reads. First, the QPU is probabilistic, and there is no guarantee that a
particular solution will emerge on a given read of the QPU. A larger number of reads will
increase the probability that diverse solutions will be returned.

To see this, let’s look at a small graph coloring problem. This is the graph of the problem:

The goal of this program is to assign colors to each node in the graph so that no neighboring

Copyright © D-Wave Systems Inc. Programming the D-Wave QPU 1



node has the same color. Here is a Python program to solve this problem, written using D-
Wave’s Ocean package [3]:

import networkx as nx

import dwave_networkx as dnx

from dwave.system.samplers import DWaveSampler

from dwave.system.composites import EmbeddingComposite

from dwave_networkx.algorithms.coloring import min_vertex_color_qubo

sampler = EmbeddingComposite(DWaveSampler())

G = nx.Graph()

G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5),

(4, 6), (5, 6), (6, 7)])

Q = min_vertex_color_qubo(G)

sampleset = sampler.sample_qubo(Q, num_reads=100)

for sample, energy, num_occ in sampleset.data([’sample’, ’energy’,

’num_occurrences’]):

colors_chosen = [i for i in sample if sample[i] == 1]

print(colors_chosen, energy, num_occ)

D-Wave’s Ocean package dwave networkx has a method, min vertex color qubo, that gen-
erates the problem’s quantum unconstrained binary optimization model (QUBO), and then
we solve the problem on the QPU. One solution looks like this:

A recent run of this problem with num reads = 10 produced 5 different solutions; another,
with num reads = 100, produced 18 different solutions. For a problem like this, with many
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valid solutions, it is clear that increasing num reads provides more diversity in the returned
solutions.

Second, larger values of num reads may make statistical trends apparent. Consider a very
small QUBO problem involving 2 qubits, which are constrained to favor solutions in which
the qubits have the same value ((0, 0) and (1, 1)) as opposed to solutions in which the qubits
have opposite values ((0, 1) and (1, 0)). Here is an Ocean program for this problem:

import dimod

from dwave.system.composites import EmbeddingComposite

from dwave.system.samplers import DWaveSampler

Q = {(0, 0): 1, (1, 1): 1, (0, 1): -2}

sampler = EmbeddingComposite(DWaveSampler())

bqm = dimod.BinaryQuadraticModel.from_qubo(Q)

response = sampler.sample(bqm, num_reads=1000)

print(response)

For two equivalent ground state solutions (both with energy zero), we expect that the QPU
will find 500 solutions of (0, 0) and 500 solutions of (1, 1). Because of the probabilistic nature
of the QPU, however, on any individual run, we do not expect precisely 500 of each. Rather,
we expect that, on average, we will get 500 of each.

Repeated runs of this program can show substantial variability – totals like 750 and 250,
for instance. If a problem runs only once, you might make unwarranted conclusions about
the trending of the results. Over many samples, though, we expect the totals to average out
to 500.
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3 Chain Strength
The chain strength parameter specifies the relative strength of chains embedded on the
QPU, which become important when a problem’s graph does not map one-to-one, prob-
lem variable to physical qubit, onto the QPU. Since most problem graphs have different
topology than the QPU’s architecture, the chain strength parameter is required for most
problems.

3.1 What is a chain?

The D-Wave QPU is comprised of a grid of qubits and couplers. The D-Wave 2000Q imple-
ments the Chimera graph:
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