
CONTACT

Corporate Headquarters
3033 Beta Ave
Burnaby, BC V5G 4M9
Canada
Tel. 604-630-1428

US Office
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Overview

In this technical report we provide an overview of the performance of
the Constrained Quadratic Model solver available as part of D-Wave’s
hybrid solver service. We define a variety of problems based on widely
used problem types and benchmark the most recent update of the
Constrained Quadratic Model Solver against previous versions.

Measuring Performance of the Leap Constrained Quadratic Model Solver

TECHNICAL REPORT

2022-11-02

14-1065A-A
D-Wave Technical Report Series



Performance of CQM i

Notice and Disclaimer
D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this document, any documents referenced
herein, and its proprietary technology, including copyright, trademark rights, industrial design rights, and patent rights. D-Wave
trademarks used herein include D-Wave™, Leap™, Ocean™, Advantage™, Advantage2™, D-Wave 2000Q™, D-Wave 2X™,
D-Wave Learn™, D-Wave Launch™, and the D-Wave logo (the D-Wave Marks). Other marks used in this document are the
property of their respective owners. D-Wave does not grant any license, assignment, or other grant of interest in or to the
copyright of this document or any referenced documents, the D-Wave Marks, any other marks used in this document, or any
other intellectual property rights used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright © D-Wave Systems Inc.



Performance of CQM 1

1 Introduction
D-Wave’s hybrid solver service (HSS) contains a port-
folio of heuristic solvers that leverage both quantum
and classical solution approaches to solve optimiza-
tion problems much larger than can fit on Advan-
tage™ quantum processors. The quantum processing
unit (QPU) natively solves quadratic unconstrained bi-
nary optimization problems over the Pegasus graph
topology [1], while the portfolio of HSS solvers provide
interface support for applications well outside that na-
tive problem formulation. This interface reduces, and
sometimes completely eliminates, the need for users to
translate their application problems into a formulation
that matches the quantum architecture.

Figure 1 illustrates the result of D-Wave’s continuing ef-
forts to expand the variety of problems that fall within
scope of the HSS portfolio. The Binary Quadratic
Model (BQM) and Discrete Quadratic Model (DQM)
solvers read unconstrained quadratic problems defined
on binary variables (that is, taking two values), and on
discrete variables (taking multiple values), respectively.
The Constrained Quadratic Model (CQM) Solver adds
the capability of specifying linear and quadratic con-
straints for the quadratic model. Moreover, this solver
accepts problems defined on binary, integer and, as of
May 2022, real variables.1 To our knowledge, this is the
world’s first and only hybrid solver capable of leverag-
ing quantum computation to address both discrete and
continuous problems.

In this report we focus on understanding the per-
formance of the CQM solver on a wide variety of
constrained quadratic problems. As D-Wave continues
to update the CQM solver, including algorithmic im-
provements and increasing support for more problem
types, the benchmarking framework used in this report
can be used to quantify the impact of these changes.

This report presents an overview of performance of the
Constrained Quadratic Model solver in the following
sections:

• Section 2 surveys the varieties of problem types
that serve as industry-standard benchmarks.

1Some notational conflict is unavoidable in standard usage:
binary, discrete, and integer variables in computer science are ex-
amples of discrete number domains in mathematics, and real vari-
ables belongs to the continuous number domain.

BQM
binary

DQM
discrete

CQM
constrained
binary
integer
real

Figure 1: The hierarchy of models available in Ocean. The Bi-
nary Quadratic Model and Discrete Quadratic Model are sub-
sets of the more general Constrained Quadratic Model. Figure
originally appeared in [2].

• Section 3 presents details about the releases of the
CQM solver which are compared in this bench-
mark.

• Section 4 presents the results of the benchmark.

The hybrid solver service is cloud-based and offered
by subscription via the Leap™ web portal; see [3, 4] to
learn more about Leap and the hybrid solver service.

2 Problem Classes for
Understanding Performance

Constrained quadratic models are a large class of mod-
els which can contain binary, discrete, integer, and real
variables. The most general version of the CQM for-
mulation can include interactions between two vari-
ables of any kind. In addition to specifying an objective
function to be optimized, the model can include sev-
eral kinds of constraints which must be satisfied. These
constraints themselves take the form of quadratic mod-
els. The CQM model supports formulation of equal-
ity and inequality constraints, which may be linear or
quadratic as well as hard (weighted) or soft (weighted).

Copyright © D-Wave Systems Inc.



Performance of CQM 2

Constraints can be defined on binary, integer, or contin-
uous variables.2 Samples returned by the CQM solver
are called feasible if they satisfy the constraints pro-
vided; otherwise, they are called infeasible.3

Understanding performance on all CQMs can be diffi-
cult because this problem class is very diverse. Instead,
we can break it up into a menagerie of smaller inter-
related problem classes that resemble specific applica-
tions types. We can use a rough hierarchy of generality
to categorize these kinds of problems, as illustrated in
Figure 2.

Binary Problems Binary quadratic problems are of-
ten used in feature selection, satisfying boolean expres-
sions, and quantum simulation. Binary quadratic prob-
lems are closest to the native model supported by the
quantum computer. In addition, a CQM with binary
variables can be used to represent a model with discrete
variables. Given a discrete variable x, which takes val-
ues in {D1, . . . , Dn}, we can encode the state of x as a set
of n booleans di which are equal to 1 if x = Di. This is
not sufficient, as x can only take one state at a time, and
so we have to add the constraint that ∑ Di = 1. There-
fore, we also use problems with discrete variables, such
as graph coloring, and give them binary-only formula-
tions.

Integer Problems Integer problems, for which vari-
ables can be assigned multiple ordered values like
0, 1, 2, 3, . . . are widely used in discrete optimization.
Here we use “integer problem” to include problems
defined on integer and/or binary variables, but not
on real (continuous) variables. Many problems are na-
tively integer, for example, financial problems that in-
volve purchasing whole units. Integer problems are of-
ten also useful for problems with discrete units of time
or space, such as in scheduling problems where events
are scheduled in 15-minute intervals. These problems
are naturally integer and not discrete because time and

2Not every possible formulation has historically been supported
by the solver, with real variables being introduced in May of 2022.
Moreover, the solver does not support CQMs where there is a real
variable in a quadratic interaction. Similarly, problems involving soft
constraints can only be solved in versions of the solver introduced as
of November of 2022.

3Because the CQM solver is a heuristic solver, it may return a mix-
ture of feasible and infeasible samples, none of which are guaranteed
to be optimal.

space are ordered, whereas discrete variables encoded
as binary are unordered. Often formulations for prob-
lems, like bin packing, can be done using either in-
teger or real variables; however, the choice of which
formulation is more appropriate is determined by the
specifics of a given application. The integer versions of
these problems are created by discretizing the continu-
ous variables, like time or space.

Mixed Integer Problems Mixed integer problems,
which can contain a combination of binary, integer,
and real variables, are the most general types used in
our tests. Models containing real variables are typically
found when the values to be assigned to nodes rep-
resent variables that are naturally continuous, like lo-
cations in space, time, and money (when allowing for
subdividing dollars).

Sourcing We source many of these problems from sev-
eral discrete programming libraries [6–10], which of-
ten feature a variety of variable types, degree, and
sizes of problems. Some libraries, like MINLPLib [6, 7]
have a variety of application-specific problems which
have been collected into benchmarks. Other libraries
are generated based on a single application type, such
as graph coloring [10]. All instances were sourced as lp
or mps files and then converted into a solver-compatible
format using the Ocean SDK [4].

We have also developed input generators for satisfia-
bility and circuit satisfiability (used for factoring) in-
puts, which are mainly formulated as binary quadratic
inputs. One benefit of writing problem generators is
the ability to test performance over a variety of input
parameters and formulation strategies, including per-
formance on equivalent formulations. For example we
can construct a boolean satisfiability problem (x1 ∧ x2)
as an unconstrained CQM Obj = −x1 · x2 or as a con-
strained cqm with Obj = 0 and the constraint x1 · x2 =
1. We can do the same procedure for factoring problems
expressed as multiplication circuits, since these are a
kind of satisfiability problem.

To achieve a similar diversity of equivalent formula-
tions for problems drawn from benchmarking libraries,
we create equivalent formulations by randomly apply-
ing a “flip” to a constraint x ≥ y ⇒ −x ≤ −y, or scal-
ing constraints by random positive numbers x ≥ y ⇒
a · x ≥ a · y, a > 0. These augmentations to existing li-

Copyright © D-Wave Systems Inc.



Performance of CQM 3

Figure 2: For the various problem classes that were tested, a non-exhaustive set of example application areas as they would be
formulated in the CQM solver. Often problems can be formulated several ways and the details of the formulation are application
and performance specific. To see some of these examples in practice visit [5].

braries help provide an even more diverse set of prob-
lems with which to characterize the performance of the
solver.

3 Updates to the CQM Solver
To characterize the impact of updates to the CQM
solver available on Leap, we choose particular updates
to use in our tests.4

1. As of December 2021: This release includes a few
minor updates from the initial October 2021 in-
troduction of the CQM solver. This version of the
CQM solver accepts problems with binary and in-
teger variables and one or more constraints. In
contrast to earlier releases of the BQM and DQM
solvers, which require the user to formulate con-
straints as penalty terms in the objective function,
this version of the CQM solver supports direct ex-
pression of equality and inequality constraints on
variables.

2. As of May 2022: This release enables the CQM

4To better understand where these updates to the solver exist in
the product timeline, see [ReleaseNotesDWave].

solver to expand the accepted models to include
CQMs with real-valued variables (also known as
“continuous variables”).

3. As of November 2022: This release enables the
CQM solvers to accept CQMs with weighted (i.e.
“soft”) constraints. A constraint can be either
“hard” or “soft.” Soft constraints are weighted in
relative importance to the objective, other con-
straints, or both, and thus can be violated to
achieve an overall good solution; whereas hard
constraints must be satisfied. Previously, all con-
straints were hard.

In addition to these modeling features, each release in-
cludes performance updates. Because the CQM solver
continues to evolve, certain problem classes can be
solved in newer updates that were previously impos-
sible. Figure 3 characterizes the ability of the solver to
read certain input categories for each update.

Copyright © D-Wave Systems Inc.



Performance of CQM 4

Figure 3: The taxonomy of problems being tested, alongside
the ability of particular updates of the CQM solver to take
in particular problem classes. Dark green indicates the given
update can solve all problems of that class; light green indi-
cates the CQM solver can solve problems of that class with
some exceptions; and yellow indicates incompatibility with
that update of the CQM solver.

����
user

-�
CQM

Solution

solver
�

�
�
��

-

@
@

@
@R

�
�

�
�	
�

@
@

@
@I

heuristic

heuristic

heuristic

QM

QM

QM

@
@

@
@R
-

�
�

�
��

@
@

@
@I

�

�
�

�
�	

QPU

Figure 4: Structure of the CQM solver in HSS. The front
end (blue) reads an input Q, and, optionally, a time limit T.
The CQM solver invokes some number of heuristic solvers
(threads) that run on classical CPUs and GPUs (teal) and
search for good-quality solutions to Q. Each heuristic solver
contains a quantum module (QM) that formulates and sends
quantum queries to a D-Wave QPU (orange); QPU responses
to these queries may be used to guide the heuristic search or
to improve the quality of a current pool of solutions. This fig-
ure originally appeared in [2].

4 Performance of the CQM
Solver

Every release of the CQM solver is based on the same
hybrid quantum-classical workflow, as shown in Fig-
ure 4. The solver has a classical front end that reads
an input Q and (optionally) a time limit T.5 It then in-
vokes one or more hybrid heuristic solvers (computa-
tion threads) to search for good-quality solutions to Q.

Each contains a classical heuristic module that explores
the solution space, and a quantum module (QM), which
formulates quantum queries that are sent to a backend
Advantage QPU. Responses from the QPU are used to
guide the heuristic module toward more promising ar-
eas of the search space, or to find improvements to ex-
isting solutions. Each heuristic sends its best solutions
to the front end before the time limit is reached, and the
front end forwards best results to the user.

In a production environment, heuristic solvers run in
parallel on state-of-the-art CPU and/or GPU platforms.
These tests were carried out using a “laboratory” ver-
sion of the CQM solver for each update tested. These
versions run on less performant classical hardware, but
allow us to maintain older updates which are no longer
available in production, and to carefully control the
hardware for comparisons. In contrast, the HSS pro-
duction solvers available to the public are deployed for
scalable use in the cloud. Since the hybrid framework
shown in Figure 4 is heavily dependent on the perfor-
mance and scale of hardware, the results of this section
may differ somewhat from those observed in deployed
systems, though we generally expect the latter to be
more efficient.

4.1 Methodology

Each solver was containerized and run with the con-
temporaneous Ocean software releases where possible,
with small fixes to allow older updates of the solver
to run. The solvers were all given 300 seconds (5 min-
utes) to solve each problem using the same hardware
resources and access to the QPU. Each solver returned
an algorithmically determined number of samples, and

5If no time limit is provided by the user, a default time that de-
pends on input size is used.

Copyright © D-Wave Systems Inc.



Performance of CQM 5

the objective value and feasibility of each sample was
calculated.

In this section we compare the different updates of the
solver using a win-loss criterion. For each problem, the
solver which has the lowest feasible objective value on
any sample is given a “win”, with ties being counted
as a win for both solvers. If none of the solvers have
a feasible objective value, meaning all of the samples
for that problem across all solvers were infeasible, then
the solver with the lowest overall objective value is
counted as a win. This approach aligns with “solution
to time framework” adopted by several publicly avail-
able repositories of benchmarks for quadratic solvers
[e.g. 11].

4.2 Results

Figure 5 summarizes the results of running this experi-
ment on the different updates of the CQM solver under
the parameters outlined above.

Figure 5: The percentage of “wins” for each update of the
solver, allowing for ties to be counted for both solvers. A win
is characterized by a lower feasible objective value on the
same problem instance given the same hardware and time
limit. If no feasible objective value is found, then the win is
given to the solver with the lowest overall objective value.

Of the 657 binary quadratic problems, the Novem-
ber 2022 release won 46.6% of problems. The second
and third best solver on binary quadratic problems
were May 2022 (34.2%) and December 2021 (19.2%)
respectively. Of the 708 integer quadratic problems,

the November 2022 release won 44.6% of problems.
The second and third best solver on integer quadratic
problems were May 2022 (33.3%) and December 2021
(22.0%) respectively. Of the 735 mixed integer quadratic
problems, the November 2022 release won 71.2% of
problems. The second best solver on mixed integer
quadratic problems was May 2022 (28.8%), and no
other solver won or was able to return solutions. Of
the 70 mixed integer soft constrained problems, the
November 2022 release won 100.0% of problems. No
other solver was able to win or return solutions.

5 Conclusion
To understand the performance of algorithms at the
rapidly advancing frontier of hybrid optimization, it
is necessary to benchmark on a diverse set of prob-
lems. This report puts forward a taxonomy of prob-
lems which represent various real-world and theoret-
ical benchmarks for D-Wave’s Constrained Quadratic
Model solver. Using this framework, we characterize
the overall performance of the most recent release of
this solver against several previous updates to the
solver.

References
1 C. McGeoch and P. Farré, “Advantage Processor Overview,”

D-Wave Technical Report Series (2022).

2 “Hybrid Solvers for Quadratic Optimization,” D-Wave
Whitepaper Series (2022).

3 D-Wave Leap, https://cloud.dwavesys.com/leap.

4 D-Wave Ocean Software Documentation, https : / / docs .

ocean.dwavesys.com/.

5 D-Wave Systems Examples, GitHub, https://github.com/
dwave-examples.

6 M. R. Bussieck, A. S. Drud, and A. Meeraus, “MINLPLib—A
Collection of Test Models for Mixed-Integer Nonlinear Pro-
gramming,” INFORMS Journal on Computing 15, 114–119
(2003).

7 S. Vigerske, MINLPLib: A Library of Mixed-Integer and Contin-
uous Nonlinear Programming Instances, (Oct. 14, 2022) https:
//www.minlplib.org/ (visited on 10/22/2022).

8 A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bas-
tubbe, et al., “MIPLIB 2017: Data-driven compilation of the
6th mixed-integer programming library,” Mathematical Pro-

Copyright © D-Wave Systems Inc.

https://cloud.dwavesys.com/leap
https://docs.ocean.dwavesys.com/
https://docs.ocean.dwavesys.com/
https://github.com/dwave-examples
https://github.com/dwave-examples
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1287/ijoc.15.1.114.15159
https://www.minlplib.org/
https://www.minlplib.org/
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3


Performance of CQM 6

gramming Computation, 10.1007/s12532- 020- 00194- 3
(2021).

9 F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, et
al., “QPLIB: a library of quadratic programming instances,”
Math. Prog. Comp. 11, 237–265 (2019).

10 S. Gualandi and M. Chiarandini, Vertex Coloring - Graph Col-
oring Benchmarks, https : / / sites . google . com / site /
graphcoloring/vertex-coloring (visited on 10/22/2022).

11 H. D. Mittelmann, Decison Tree for Optimization Software,
http : / / plato . asu . edu / guide . html (visited on
10/22/2022).

Copyright © D-Wave Systems Inc.

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-018-0147-4
https://sites.google.com/site/graphcoloring/vertex-coloring
https://sites.google.com/site/graphcoloring/vertex-coloring
http://plato.asu.edu/guide.html

	Introduction
	Problem Classes for Understanding Performance
	Updates to the CQM Solver
	Performance of the CQM Solver
	Methodology
	Results

	Conclusion
	References

